高级搜索

星载SAR技术的现状与发展趋势

李春升 王伟杰 王鹏波 陈杰 徐华平 杨威 于泽 孙兵 李景文

引用本文: 李春升, 王伟杰, 王鹏波, 陈杰, 徐华平, 杨威, 于泽, 孙兵, 李景文. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229-240. doi: 10.11999/JEIT151116 shu
Citation:  LI Chunsheng, WANG Weijie, WANG Pengbo, CHEN Jie, XU Huaping, YANG Wei, YU Ze, SUN Bing, LI Jingwen. Current Situation and Development Trends of Spaceborne SAR Technology[J]. Journal of Electronics and Information Technology, 2016, 38(1): 229-240. doi: 10.11999/JEIT151116 shu

星载SAR技术的现状与发展趋势

摘要: 纵观星载合成孔径雷达技术的发展历程,其发展趋势已经从传统的单项技术突破转变为概念体制的更新。各种面向新型应用的新体制、新模式不断出现,推动着星载 SAR 技术蓬勃发展。该文在介绍欧美等国星载 SAR 技术发展现状的基础上,分析未来星载SAR 技术的发展趋势,重点探讨星载 SAR 技术在面向高分辨率宽覆盖对地观测、多方位角信息获取、高时相信息获取、3维地形测绘及图像质量提升等方面的发展。

English

    1. [1]

      魏钟铨. 合成孔径雷达卫星[M]. 北京: 科学出版社, 2001: 7-8.

    2. [2]

      WEI Zhongquan. Synthetic Aperture Radar Satellite[M]. Beijing: Science Press, 2001: 7-8.

    3. [3]

      BAYIR I. A glimpse to future commercial spy satellite systems[C]. Proceedings of the 4th IEEE International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2009: 370-375.

    4. [4]

      PITZ W and MILLER D. The TerraSAR-X Satellite[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(2): 615-622.

    5. [5]

      BREIT H, FRITZ T, BALSS U, et al. TerraSAR-X SAR processing and products[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(2): 727-740.

    6. [6]

      WEBER M. Terrasar-X and Tandem-X: reconnaisance applications[C]. Proceedings of the 3rd International Conference on Recent Advances in Space Technologies Istanbul, Turkey, 2007: 299-303.

    7. [7]

      TAINI G, PANETTI A, SPATARO F, et al. SENTINEL-1 satellite system architecture: design, performances and operations[C]. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1722-1725.

    8. [8]

      POTIN P, BARGELLINI P, LAUR H, et al. Sentinel-1 mission operations concept[C]. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1745-1748.

    9. [9]

      TOWNSEND W. An initial assessment of the performance achieved by the Seasat-1 radar altimeter[J]. IEEE Journal of Oceanic Engineering, 1980, 5(2): 80-92.

    10. [10]

      JORDAN R L, HUNEYCUTT B L, and WEMER M. The SIR-C/X-SAR synthetic aperture radar system[J]. IEEE Transactions on Geoscience Remote Sensing, 1995, 33(4): 829-839.

    11. [11]

      EVANS D L, PLAUT J J, and STOFAN E R. Overview of the spaceborne imaging Radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) missions[J]. Remote Sensing of Environment, 1997, 59(2): 135-140.

    12. [12]

      孙佳. 国外合成孔径雷达卫星发展趋势分析[J]. 装备指挥技术学院学报, 2009, 18(1): 67-70.

    13. [13]

      SUN Jia. Analysis of the SAR satellite development tendency in the world[J]. Journal of the Academy of Equipment Command Technology, 2009, 18(1): 67-70.

    14. [14]

      杨海燕, 安雪滢, 郑伟. 美国未来成像体系结构关键技术及失败原因分析[J]. 航天器工程, 2009, 18(2): 90-94.

    15. [15]

      YANG Haiyan, AN Xueying, and ZHENG Wei. Analysis of key techniques and failure causes of US future imagery architecture[J]. Spacecraft Engineering, 2009, 18(2): 90-94.

    16. [16]

      高庆军, 宋泽考. 美国空间雷达计划发展动态[J]. 国际太空, 2007: 5-8.

    17. [17]

      GAO Qingjun and SONG Zekao. American space radar program developments[J]. Space International, 2007: 5-8.

    18. [18]

      United States Government Accountability Office. Assessments of selected weapon programs[P]. 2008.

    19. [19]

      THOMSON G H. Evaluation of Russian Arkon-2 earth observation satellite[J]. Imaging Science Journal, 2005, 53(3): 163-173.

    20. [20]

      INTERFAX. Kondor-E satellite launched from Baikonur reaches orbit[J]. Russia Cis Military Newswire, 2014.

    21. [21]

      魏雯. 俄罗斯调整2020年前遥感卫星系统发射计划[J]. 中国航天, 2013: 21-25.

    22. [22]

      WEI Wen. Russian adjusts the launch plan of remote sensing satellite[J]. Aerospace China, 2013: 21-25.

    23. [23]

      SANFOURCHE J P. SAR-lupe, an important German initiative[J]. Air Space Europe, 2000, 2(4): 26-27.

    24. [24]

      PETRIE G. Current future spaceborne SAR systems[C]. Proceedings of the International Scientific Technical Conference Porec, Groatia, 2008.

    25. [25]

      LEHNER S, SCHULZ-STELLENFLETH J, BRUSCH S, et al. Use of TerraSAR-X data for oceanography[C]. Proceedings of the 2008 European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1-4.

    26. [26]

      BOERNER W M. Launches of Pol-In-SAR satellite sensors and results of satellite tandem-SAR TanDEM-X[C]. Proceedings of the 9th IEEE International Symposium on Antennas Propagation and EM Theory, 2010: 533-535.

    27. [27]

      JANOTH J, GANTERT S, SCHRAGE T, et al. Terrasar next generation - Mission capabilities[C]. Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australian, 2013: 2297-2300.

    28. [28]

      JANOTH J, GANTERT S, KOPPE W, et al. TerraSAR-X2 - Mission overview[C]. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 217-220.

    29. [29]

      COVELLO F, BATTAZZA F, COLETTA A, et al. COSMO- SkyMed an existing opportunity for observing the Earth[J]. Journal of Geodynamics, 2010, 49(3): 171-180.

    30. [30]

      CALIO E, BUSSI B, NICITO A, et al. COSMO-SkyMed: operational results and performance[C]. Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1-4.

    31. [31]

      CALTAGIRONE F, SPERA P, and VIGLIOTTI R. SkyMed/ COSMO mission overview[C]. Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium, Seattle, US, 1998: 683-685.

    32. [32]

      GEUDTNER D, TORRES R, SNOEIJ P, et al. Sentinel-1 mission capabilities and SAR system calibration[C]. Proceedings of the 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1-4.

    33. [33]

      CHABOT M, DECOUST C, LEDANTEC P, et al. RADARSAT-2 system operations and performance[C]. Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 994-997.

    34. [34]

      BRULE L, DELISLE D, BAEGGLI H, et al. RADARSAT-2 program update[C]. Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2005: 9-11.

    35. [35]

      FLETT D, CREVIER Y, and GIRARD R. The RADARSAT constellation mission: meeting the government of Canadas needs and requirements[C]. Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: II-910-II-912.

    36. [36]

      SHARAY Y and NAFTALY U. TECSAR: Design considerations and programme status[J]. IEEE Proceedings - Radar Sonar and Navigation, 2006, 153(2): 117-121.

    37. [37]

      NAFTALY U and LEVY-NATHANSOHN R. Overview of the TecSAR satellite hardware and Mosaic mode[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 423-426.

    38. [38]

      IGARASHI T. Alos mission requirement and sensor specifications[J]. Advances in Space Research, 2001, 28(1): 127-131.

    39. [39]

      OZAWA T and MIYAGI Y. Results from ALOS and expectations to ALOS-2 in earthquake/volcano research[C]. Proceedings of the 2013 IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 185-187.

    40. [40]

      KANKAKU Y, SUZUKI S, and OSAWA Y. ALOS-2 mission and development status[C]. Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australian, 2013: 2396-2399.

    41. [41]

      CURLANDER J C and NOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. Hoboken, NJ: Wiley, 1991.

    42. [42]

      GEBERT N, FOIS F, HELIERE F, et al. Multi-channel SAR: Relaxing the minimum antenna area constraint[C]. Proceedings of the 2011 IEEE International Radar Symposium, Leipzig, Germany, 2011: 53-58.

    43. [43]

      XU W and DENG Y. Multichannel SAR with reflector antenna for high-resolution wide-swath imaging[J]. IEEE Antennas Wireless Propagation Letters, 2010, 9(1): 1123-1126.

    44. [44]

      MITTERMAYER J and RUNGE H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australian, 2013: 2140-2142.

    45. [45]

      王从雷, 邓云凯, 赵凤军. 合成孔径雷达多波速通道间相位误差研究[J]. 测试技术学报, 2005, 19(3): 315-319.

    46. [46]

      WANG Conglei, DENG Yunkai, and ZHAO Fengjun. Study of SAR multibeam interchannel phase errors[J]. Journal of Test Measurement Technology, 2005, 19(3): 315-319.

    47. [47]

      LASKOWSKI P, BORDONI F, and YOUNIS M. Error analysis and calibration techniques for multichannel SAR instruments[C]. Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australian, 2013: 4503-4506.

    48. [48]

      VILLANO M, KRIEGER G, and MOREIRA A. Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46.

    49. [49]

      GERBERT N and KRIEGER G. Ultra-wide swath SAR imaging with continuous PRF variation[C]. Proceedings of the 2010 European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 966-969.

    50. [50]

      SALMON N A, BEALE J, PARKINSON J, et al. Digital beam-forming for passive millimetre wave security imaging [C]. Proceedings of the 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007: 1-11.

    51. [51]

      WANG Pengbo, LIU Wei, CHEN Jie, et al. A raster scan SAR system for ultra-wide swath imaging[J]. Remote Sensing Letters, 2014, 5(9): 833-842.

    52. [52]

      DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    53. [53]

      ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.

    54. [54]

      LIU D and BOUFOUNOS P T. High resolution scan mode SAR using compressive sensing[C]. Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 525-528.

    55. [55]

      王天荆, 郑宝玉, 杨震. 基于自适应冗余字典的语音信号稀疏表示算法[J]. 电子与信息学报, 2011, 33(10): 2372-2377. doi: 10.3724/SP.J.1146.2011.00125.

    56. [56]

      WANG Tianjing, ZHENG Baoyu, and YANG Zhen. A speech signal sparse representation algorithm based on adaptive overcomplete dictionary[J]. Journal of Electronics Information Technology, 2011, 33(10): 2372-2377. doi: 10.3724/SP.J.1146.2011.00125.

    57. [57]

      WRIGHT S J, NOWAK R D, and FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2479-2493.

    58. [58]

      MITTERMAYER J, WOLLATADT S, PRATS-IRAOLA P, et al. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(6): 3695-3706.

    59. [59]

      黄丽佳, 胡东辉, 丁赤飚. 中高轨道SAR信号建模和成像方法研究[J]. 国外电子测量技术, 2011, 6: 21-27.

    60. [60]

      HUANG Lijia, HU Donghui, and DING Chibiao. Study on signal modeling and imaging approach for medium-earth- orbit SAR[J]. Foreign Electronic Measurement Technology, 2011, 6: 21-27.

    61. [61]

      LI Z, LI C S, YU Z, et al. Back projection algorithm for high resolution GEO-SAR image formation[C]. Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 336-339.

    62. [62]

      HUANG L J, QIU X L, HU D H, et al. Focusing of Medium- Earth-Orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500-508.

    63. [63]

      ZEBKER H A and GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B5): 4993-4999.

    64. [64]

      ALLEN C T. Interferometric synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Society Newsletter, 1995, 96: 6-13.

    65. [65]

      CLOUDE S R, PAPATHANASSIOU K P, REIGBER A, et al. Multi-frequency polarimetric SAR interferometry for vegetation structure extraction[C]. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, US, 2000: 129-131.

    66. [66]

      XU W, CHANG E C, KWOH L K, et al. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline [C]. Proceedings of the 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, 1994: 730-732.

    67. [67]

      DE ZAN F and GUAMIERI A M. TOPSAR: Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience Remote Sensing, 2006, 44(9): 2352-2360.

    1. [1]

      蒋成龙张冰尘王正道洪文. 基于复数信息传递的结构稀疏宽角合成孔径雷达成像算法. 电子与信息学报, 2015, 37(8): 1793-1800. doi: 10.11999/JEIT141300

    2. [2]

      徐建平皮亦鸣曹宗杰. 基于贝叶斯压缩感知的合成孔径雷达高分辨成像. 电子与信息学报, 2011, 33(12): 2863-2868. doi: 10.3724/SP.J.1146.2010.01377

    3. [3]

      刘艳阳李真芳杨桃丽保铮. 一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法. 电子与信息学报, 2012, 34(12): 2913-2919. doi: 10.3724/SP.J.1146.2012.00562

    4. [4]

      张梅刘畅王岩飞. 频带合成超高分辨率机载SAR系统的相位误差校正. 电子与信息学报, 2011, 33(12): 2813-2818. doi: 10.3724/SP.J.1146.2011.00361

    5. [5]

      邓云凯陈倩祁海明郑慧芳刘亚东. 一种基于频域子带合成的多发多收高分辨率SAR成像算法. 电子与信息学报, 2011, 33(5): 1082-1087. doi: 10.3724/SP.J.1146.2010.01067

    6. [6]

      林雪孟大地李芳芳胡东辉丁赤飚. 一种新的高分辨率宽波束机载SAR成像算法. 电子与信息学报, 2015, 37(4): 939-945. doi: 10.11999/JEIT140685

    7. [7]

      李杨黄杰文禹卫东. 高分辨率宽测绘带星载SAR距离向DBF处理. 电子与信息学报, 2011, 33(6): 1510-1514. doi: 10.3724/SP.J.1146.2010.01157

    8. [8]

      侯丽丽郑明洁宋红军祁丽娟. 多通道高分辨率宽测绘带SAR系统杂波抑制技术研究. 电子与信息学报, 2016, 38(3): 635-642. doi: 10.11999/JEIT150659

    9. [9]

      吴明宇杨桃丽吴顺君李真芳. 星载多通道高分辨率宽测绘带SAR系统运动目标检测方法. 电子与信息学报, 2014, 36(2): 441-444. doi: 10.3724/SP.J.1146.2013.00465

    10. [10]

      杨军孙光才吴玉峰邢孟道. 基于方位谱分析的斜视TOPS SAR子孔径成像方法. 电子与信息学报, 2014, 36(4): 923-930. doi: 10.3724/SP.J.1146.2013.00673

    11. [11]

      卢景月张磊王冠勇. 前视多通道合成孔径雷达解模糊成像方法. 电子与信息学报, 2018, 40(12): 2820-2825. doi: 10.11999/JEIT180177

    12. [12]

      金添周智敏. 超宽带合成孔径雷达金属地雷双峰特征增强算法. 电子与信息学报, 2008, 30(9): 2077-2080 . doi: 10.3724/SP.J.1146.2007.00227

    13. [13]

      陈曦张红王超. 双基线极化干涉合成孔径雷达的植被参数提取. 电子与信息学报, 2008, 30(12): 2858-2861 . doi: 10.3724/SP.J.1146.2007.01220

    14. [14]

      李煜陈杰张渊智. 合成孔径雷达海面溢油探测研究进展. 电子与信息学报, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468

    15. [15]

      杨文颜卫涂尚坦廖明生. 基于贝叶斯信息准则的极化干涉SAR图像非监督分类. 电子与信息学报, 2012, 34(11): 2628-2634. doi: 10.3724/SP.J.1146.2012.00448

    16. [16]

      刘艳阳李真芳索志勇保铮. 一种星载多通道高分辨率宽测绘带SAR系统通道相位偏差估计新方法. 电子与信息学报, 2013, 35(8): 1862-1868. doi: 10.3724/SP.J.1146.2012.01424

    17. [17]

      张璇汪玲. 一种基于回波相关的无源合成孔径雷达成像方法. 电子与信息学报, 2012, 34(6): 1511-1515. doi: 10.3724/SP.J.1146.2011.00704

    18. [18]

      张慧洪峻王宇李纪传. 机载顺轨干涉合成孔径雷达定标中地面控制点的布设策略研究. 电子与信息学报, 2015, 37(7): 1716-1722. doi: 10.11999/JEIT141220

    19. [19]

      丁振宇谭维贤王彦平洪文吴一戎. 平台运动测量误差对阵列天线合成孔径雷达三维成像影响分析. 电子与信息学报, 2015, 37(6): 1424-1430. doi: 10.11999/JEIT141106

    20. [20]

      贾颖新王岩飞. 一种宽带多通道合成孔径雷达系统幅相特性测量与校正方法. 电子与信息学报, 2013, 35(9): 2168-2174. doi: 10.3724/SP.J.1146.2012.01064

  • 加载中
计量
  • PDF下载量:  1472
  • 文章访问数:  577
  • HTML全文浏览量:  15
  • 引证文献数: 0
文章相关
  • 收稿日期:  2015-09-30
  • 录用日期:  2015-12-18
  • 刊出日期:  2016-01-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章