高级搜索

一种视频压缩感知中两级多假设重构及实现方法

欧伟枫 杨春玲 戴超

引用本文: 欧伟枫, 杨春玲, 戴超. 一种视频压缩感知中两级多假设重构及实现方法[J]. 电子与信息学报, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142 shu
Citation:  OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics and Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142 shu

一种视频压缩感知中两级多假设重构及实现方法

摘要: 视频压缩感知在采集端资源受限的视频采集应用场景有重要研究意义。重构算法是视频压缩感知的关键技术,基于多假设预测的预测-残差重构框架具有良好的重构性能。但现有的多假设预测算法大多在观测域提出,这种预测方法由于受到不重叠分块的限制,造成了预测帧的块效应,降低了重构质量。针对此问题,该文将像素域多假设预测与观测域多假设预测相结合,提出两级多假设重构思想(2sMHR),并设计了基于图像组(Gw_2sMHR)和基于帧(Fw_2sMHR)的两种实现方法。仿真结果表明,所提2sMHR重构算法能有效减小块效应,相比于现有最好的多假设预测算法具有更低的时间复杂度和更高的视频重构质量。

English

    1. [1]

      LIU Y and PADOS D A. Compressed-sensed-domain L1-PCA video surveillance[J]. IEEE Transactions on Multimedia, 2016, 18(3): 351-363. doi: 10.1109/TMM.2016. 2514848.

    2. [2]

      GUO J, SONG B, and DU X. Significance evaluation of video data over media cloud based on compressed sensing[J]. IEEE Transactions on Multimedia, 2016, 18(7): 1297-1304. doi: 10.1109/TMM.2016.2564100.

    3. [3]

      REHMAN A U, SHAH G A, and TAHIR M. Compressed sensing based adaptive video coding for resource constrained devices[C]. IEEE International Wireless Communications and Mobile Computing Conference, Paphos, Cyprus, 2016: 170-175.

    4. [4]

      WANG J, GUPTA M, and SANKARANARAYANAN A C. LiSensA scalable architecture for video compressive sensing[C]. IEEE International Conference on Computational Photography, Houston, TX, 2015: 1-9.

    5. [5]

      LLULL P, LIAO X J, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics Express, 2013, 21(9): 10526-10545. doi: 10.1364/OE.21.010526.

    6. [6]

      HOSSEINI M S and PLATANIOTIS K N. High-accuracy total variation with application to compressed video sensing [J]. IEEE Transactions on Image Processing, 2014, 23(9): 3869-3884. doi: 10.1109/TIP.2014.2332755.

    7. [7]

      YANG J B, YUAN X, LIAO X J, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4863-4878. doi: 10.1109/TIP.2014.2344294.

    8. [8]

      常侃, 覃团发, 唐振华. 基于联合总变分最小化的视频压缩感知重建算法[J]. 电子学报, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.

    9. [9]

      CHANG K, QIN T F, and TANG Z H. Reconstruction algorithm for compressed sensing of video based on joint total variation minimization[J]. Acta Electronica Sinica, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.

    10. [10]

      ZHAO C, MA S W, ZHANG J, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, to be published. doi: 10.1109/TCSVT. 2016.2527181.

    11. [11]

      MUN S and FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]. IEEE Data Compression Conference, Snowbird, 2011: 183-192.

    12. [12]

      NARAYANAN S and MAKUR A. Compressive coded video compression using measurement domain motion estimation [C]. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, 2014: 1-6.

    13. [13]

      GUO J, SONG B, LIU H X, et al. Motion estimation in measurement domain for compressed video sensing[C]. IEEE International Conference on Computer and Information Technology, Xi,an, 2014: 441-445.

    14. [14]

      DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[C]. IEEE International Conference on Image Processing, Cairo, 2009: 1393-1396.

    15. [15]

      TRAMEL E W and FOWLER J E. Video compressed sensing with multihypothesis[C]. IEEE Data Compression

    16. [16]

      Conference, Snowbird, 2011: 193-202.

    17. [17]

      AZGHANI M, KARIMI M, and MARVASTI F. Multihypothesis compressed video sensing technique[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(4): 627-635. doi: 10.1109/TCSVT.2015. 2418586.

    18. [18]

      CHEN J, CHEN Y, QIN D, et al. An elastic net-based hybrid hypothesis method for compressed video sensing[J]. Multimedia Tools Applications, 2013, 74(6): 2085-2108. doi: 10.1007/s11042-013-1743-y.

    19. [19]

      KUO Y H, WU K, and CHEN J. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129-148. doi: 10.1007/s11045- 015-0337-4.

    20. [20]

      GAN L. Block compressed sensing of natural images[C]. IEEE International Conference on Digital Signal Processing, Cardiff, 2007: 403-406.

    21. [21]

      OU W F, YANG C L, LI W H, et al. A two-stage multi- hypothesis reconstruction scheme in compressed video sensing[C]. IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016: 2494-2498.

    22. [22]

      杨春玲, 欧伟枫. CVS中基于多参考帧的最优多假设预测算法[J]. 华南理工大学学报(自然科学版), 2016, 44(1): 1-8. doi: 10.3969/j.issn.1000-565X.2016.01.001.

    23. [23]

      YANG C L and OU W F. Multi-reference frames-based optimal multi-hypothesis prediction in compressed video sensing[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 1-8. doi: 10.3969/ j.issn.1000-565X.2016.01.001.

    24. [24]

      MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. IEEE International Conference on Image Processing, Cairo, 2009: 3021-3024.

    1. [1]

      胡长雨汪玲朱栋强. 结合字典学习技术的ISAR稀疏成像方法. 电子与信息学报, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747

    2. [2]

      陈鸿昶明拓思宇刘树新高超. 基于整数线性规划重构抽象语义图结构的语义摘要算法. 电子与信息学报, 2019, 41(7): 1674-1681. doi: 10.11999/JEIT180720

    3. [3]

      张小恒李勇明王品曾孝平颜芳张艳玲承欧梅. 基于语音卷积稀疏迁移学习和并行优选的帕金森病分类算法研究. 电子与信息学报, 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792

    4. [4]

      蒋莹王冰切韩俊何翼. 基于分布式压缩感知的宽带欠定信号DOA估计. 电子与信息学报, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723

    5. [5]

      张顺外魏琪. 多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析. 电子与信息学报, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    6. [6]

      唐伦马润琳杨恒陈前斌. 基于非正交多址接入的网络切片联合用户关联和功率分配算法. 电子与信息学报, 2019, 41(0): 1-8. doi: 10.11999/JEIT180770

    7. [7]

      李海李怡静吴仁彪. 载机偏航下基于广义相邻多波束自适应处理的低空风切变风速估计. 电子与信息学报, 2019, 41(7): 1728-1734. doi: 10.11999/JEIT180758

    8. [8]

      达新宇王浩波罗章凯胡航倪磊潘钰. 基于双层多参数加权类分数阶傅里叶变换的双极化卫星安全传输方案. 电子与信息学报, 2019, 41(8): 1973-1981. doi: 10.11999/JEIT181135

    9. [9]

      潘一苇彭华李天昀王文雅. 一种新的时分多址信号射频特征及其在特定辐射源识别中的应用. 电子与信息学报, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

    10. [10]

      周洋吴佳忆陆宇殷海兵. 面向三维高效视频编码的深度图错误隐藏. 电子与信息学报, 2019, 41(0): 1-8. doi: 10.11999/JEIT180926

    11. [11]

      苏玉泽孟相如康巧燕韩晓阳. 核心链路感知的可生存虚拟网络链路保护方法. 电子与信息学报, 2019, 41(7): 1587-1593. doi: 10.11999/JEIT180737

    12. [12]

      王莉曹一凡杜高明刘冠宇王晓蕾张多利. 一种低延迟的3维高效视频编码中深度建模模式编码器. 电子与信息学报, 2019, 41(7): 1625-1632. doi: 10.11999/JEIT180798

    13. [13]

      王晓晗王韬李雄伟张阳黄长阳. 一种基于压缩边界Fisher分析的硬件木马检测方法. 电子与信息学报, 2019, 41(0): 1-8. doi: 10.11999/JEIT190004

    14. [14]

      张建中穆贺强文树梁李彦兵高红卫. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法. 电子与信息学报, 2019, 41(7): 1712-1720. doi: 10.11999/JEIT180851

  • 加载中
计量
  • PDF下载量:  276
  • 文章访问数:  215
  • HTML全文浏览量:  1
  • 引证文献数: 0
文章相关
  • 收稿日期:  2016-10-26
  • 录用日期:  2017-03-21
  • 刊出日期:  2017-07-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章