高级搜索

超高分辨率机载SAR高精度子带拼接与处理方法研究

王沛 王翔宇 李宁 禹卫东 王宇

引用本文: 王沛, 王翔宇, 李宁, 禹卫东, 王宇. 超高分辨率机载SAR高精度子带拼接与处理方法研究[J]. 电子与信息学报, 2017, 39(10): 2325-2331. doi: 10.11999/JEIT170093 shu
Citation:  WANG Pei, WANG Xiangyu, LI Ning, YU Weidong, WANG Robert. Investigation on High Precision Sub-band Synthesizing and Processing Method for Very-high-resolution Airborne SAR[J]. Journal of Electronics and Information Technology, 2017, 39(10): 2325-2331. doi: 10.11999/JEIT170093 shu

超高分辨率机载SAR高精度子带拼接与处理方法研究

摘要: 随着合成孔径雷达(SAR)的发展,对目标细节的观测越来越受到重视。SAR图像的分辨率越高,获取的细节信息就越多。目前,一种实用性较高的技术是,利用步进频率线性调频信号波形获取超高分辨率SAR图像。这种技术基于不同子带信号的步进载频关系,通过子带拼接来合成大带宽信号。然而,子带拼接对于基带信号误差非常敏感,该文首先提出一种基于回归和统计学的信号预失真方案。在补偿完子带内的误差后,将子带间的误差转化为一个多变量的优化问题。最后,通过X波段机载SAR系统飞行实测数据验证了所提方法的有效性。

English

    1. [1]

      邓云凯, 赵凤军, 王宇. 星载 SAR 技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300. 2012.20015.

    2. [2]

      DENG Yunkai, ZHAO Fengjun, and WANG Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10. doi: 10.3724/ SP.J.1300.2012.20015.

    3. [3]

      DENG Yunkai and WANG Yu. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1-9. doi: 10.3724/SP.J.1300.2014.14026.

    4. [4]

      邓云凯, 陈倩, 祁海明, 等. 一种基于频域子带合成的多发多收高分辨率 SAR 成像算法[J]. 电子与信息学报, 2011, 33(5): 1082-1087. doi: 10.3724/SP.J.1146.2010.01067.

    5. [5]

      DENG Yunkai, CHEN Qian, QI Haiming, et al. A high- resolution imaging algorithm for MIMO SAR based on the sub-band synthesis in frequency domain[J]. Journal of Electronics Information Technology, 2011, 33(5): 1082-1087. doi: 10.3724/SP.J.1146.2010.01067.

    6. [6]

      王岩飞, 刘畅, 李和平, 等. 基于多通道合成的优于 0.1 m 分辨率的机载 SAR 系统[J]. 电子与信息学报, 2013, 35(1): 29-35. doi: 10.3724/SP.J.1146.2011.01370.

    7. [7]

      WANG Yanfei, LIU Chang, LI Heping, et al. An airborne SAR with 0.1 m resolution using multi-channel synthetic bandwidth[J]. Journal of Electronics Information Technology, 2013, 35(1): 29-35. doi: 10.3724/SP.J.1146.2011. 01370.

    8. [8]

      DENG Y, ZHENG H, WANG R, et al. Internal calibration for stepped-frequency chirp SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1105-1109. doi: 10.1109/LGRS.2011.2157889.

    9. [9]

      LORD R T and INGGS M R. High resolution SAR processing using stepped-frequencies[C]. IEEE International Geoscience and Remote Sensing Symposium, Piscataway NJ, United States, 1997: 490-492.

    10. [10]

      CANTALLOUBE H M J and DUBOIS-FERNANDEZ P. Airborne X-band SAR imaging with 10 cm resolution- technical challenge and preliminary results[C]. IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 185-187.

    11. [11]

      ENDER J H G and BRENNER A R. PAMIR-a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 165-172. doi: 10.1049/ ip-rsn:20030445.

    12. [12]

      BRENNER A R. Improved radar imaging by centimeter resolution capabilities of the airborne SAR sensor PAMIR[C]. IEEE Radar Symposium, Dresden, Germany, 2013: 218-223.

    13. [13]

      NEL W, TAIT J, LORD R, et al. The use of a frequency domain stepped frequency technique to obtain high range resolution on the CSIR X-band SAR system[C]. IEEE AFRICON (IEEEs flagship conference of the African continent), 6th, George, South Africa, 2002: 327-332.

    14. [14]

      SCHEIBER R, BARBOSA F, NOTTENSTEINER A, et al. E-SAR upgrade to stepped-frequency mode: System description and data processing approach[C]. EUSAR (The European Conference on Synthetic Aperture Radar), Dresden, Germany, 2006: 1-4.

    15. [15]

      LUO X, DENG Y, WANG R, et al. Correction of channel imbalance for MIMO SAR using stepped-frequency chirps[J]. International Journal of Antennas and Propagation, 2014, Article ID 161294. doi: 10.1155/2014/161294.Artical ID161294.

    16. [16]

      LI J, CHEN J, LIU W, et al. A synthetic bandwidth method for high-resolution SAR based on PGA in the range dimension[J]. Sensors, 2015, 15(7): 15339-15362. doi: 10.3390 /s150715339.

    17. [17]

      HU J, WANG Y, and LI H. Channel phase error estimation and compensation for ultrahigh-resolution airborne SAR system based on echo data[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1069-1073. doi: 10.3390/ s150715339.

    18. [18]

      ZHANG Y, ZHAI W, and ZHANG X. A simple imaging algorithm for stepped-chirp SAR[C]. EUSAR (The European Conference on Synthetic Aperture Radar), Friedrichshafen, Germany, 2008: 1-4.

    19. [19]

      HAN B, HAN B, DING C, et al. A new method for stepped- frequency SAR imaging[C]. EUSAR (The European Conference on Synthetic Aperture Radar), Dresden, Germany, 2006: 1-4.

    20. [20]

      NIE X, ZHU D, MAO X, et al. Application of the frequency- domain synthetic bandwidth approach in polar format algorithm[C]. IEEE Radar Conference, Pasadena,CA, USA, 2009: 1-5.

    21. [21]

      DING Z, GAO W, LIU J, et al. A novel range grating lobe suppression method based on the stepped-frequency SAR image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 606-610. doi: 10.1109/LGRS.2014.2352676.

    22. [22]

      DING Z, GUO Y, GAO W, et al. A range grating lobes suppression method for stepped-frequency SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5677-5687. doi: 10.1109/JSTARS.2016.2593711.

    23. [23]

      SMOLA A J and SCHLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222. doi : 10.1023/B:STCO.0000035301.49549.88.

    24. [24]

      CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 1-27. doi: 10.1145/ 1961189.1961199.

    25. [25]

      LUO X, DENG Y, WANG R, et al. Image formation processing for sliding spotlight SAR with stepped frequency chirps[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1692-1696. doi: 10.1109/LGRS.2014.2306206.

    26. [26]

      HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66-72.

    1. [1]

      贾颖新王岩飞. 一种宽带多通道合成孔径雷达系统幅相特性测量与校正方法. 电子与信息学报, 2013, 35(9): 2168-2174. doi: 10.3724/SP.J.1146.2012.01064

    2. [2]

      张梅刘畅王岩飞. 频带合成超高分辨率机载SAR系统的相位误差校正. 电子与信息学报, 2011, 33(12): 2813-2818. doi: 10.3724/SP.J.1146.2011.00361

    3. [3]

      徐建平皮亦鸣曹宗杰. 基于贝叶斯压缩感知的合成孔径雷达高分辨成像. 电子与信息学报, 2011, 33(12): 2863-2868. doi: 10.3724/SP.J.1146.2010.01377

    4. [4]

      邓云凯陈倩祁海明郑慧芳刘亚东. 一种基于频域子带合成的多发多收高分辨率SAR成像算法. 电子与信息学报, 2011, 33(5): 1082-1087. doi: 10.3724/SP.J.1146.2010.01067

    5. [5]

      丁振宇谭维贤王彦平洪文吴一戎. 平台运动测量误差对阵列天线合成孔径雷达三维成像影响分析. 电子与信息学报, 2015, 37(6): 1424-1430. doi: 10.11999/JEIT141106

    6. [6]

      刘妍余淮杨文李立. 利用SAR-FAST角点检测的合成孔径雷达图像配准方法. 电子与信息学报, 2017, 39(2): 430-436. doi: 10.11999/JEIT160386

    7. [7]

      袁自月牛一鸣杨国吴文. 一种阵列天线阵元幅相、位置误差校正方法. 电子与信息学报, 2014, 36(9): 2232-2237. doi: 10.3724/SP.J.1146.2013.01807

    8. [8]

      程丰龚子平张驰万显荣. 一种基于旋转测量的阵列幅相误差校正新方法. 电子与信息学报, 2017, 39(8): 1899-1905. doi: 10.11999/JEIT161058

    9. [9]

      胡建民王岩飞李和平. 基于回波数据的超高分辨率SAR通道相位误差估计与补偿. 电子与信息学报, 2012, 34(7): 1602-1608. doi: 10.3724/SP.J.1146.2011.01080

    10. [10]

      张双喜孙光才周峰刘艳阳邢孟道. 一种基于子孔径自聚焦的高频运动误差估计和补偿方法. 电子与信息学报, 2010, 32(12): 3013-3017. doi: 10.3724/SP.J.1146.2010.00119

    11. [11]

      侯丽丽郑明洁宋红军祁丽娟. 多通道高分辨率宽测绘带SAR系统杂波抑制技术研究. 电子与信息学报, 2016, 38(3): 635-642. doi: 10.11999/JEIT150659

    12. [12]

      李杨黄杰文禹卫东. 高分辨率宽测绘带星载SAR距离向DBF处理. 电子与信息学报, 2011, 33(6): 1510-1514. doi: 10.3724/SP.J.1146.2010.01157

    13. [13]

      吴明宇杨桃丽吴顺君李真芳. 星载多通道高分辨率宽测绘带SAR系统运动目标检测方法. 电子与信息学报, 2014, 36(2): 441-444. doi: 10.3724/SP.J.1146.2013.00465

    14. [14]

      刘艳阳李真芳杨桃丽保铮. 一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法. 电子与信息学报, 2012, 34(12): 2913-2919. doi: 10.3724/SP.J.1146.2012.00562

    15. [15]

      刘艳阳李真芳索志勇保铮. 一种星载多通道高分辨率宽测绘带SAR系统通道相位偏差估计新方法. 电子与信息学报, 2013, 35(8): 1862-1868. doi: 10.3724/SP.J.1146.2012.01424

    16. [16]

      张柯程菊明付进. 阵列通道不一致性误差快速有源校正算法. 电子与信息学报, 2015, 37(9): 2110-2116. doi: 10.11999/JEIT141651

    17. [17]

      刘亚波刘霖童智勇喻忠军. S波段高分辨宽幅SAR辐射定标及误差分析方法. 电子与信息学报, 2019, 41(0): 1-6. doi: 10.11999/JEIT180983

    18. [18]

      张绍明何向晨张小虎孙义威. 高分辨率星载SAR图像水上桥梁解译. 电子与信息学报, 2011, 33(7): 1706-1712. doi: 10.3724/SP.J.1146.2010.01341

    19. [19]

      娄军金添宋千周智敏. 高分辨率SAR图像散射中心特征提取. 电子与信息学报, 2011, 33(7): 1661-1666. doi: 10.3724/SP.J.1146.2010.00960

    20. [20]

      宦若虹杨汝良. 基于多幅同目标图像和HMM的SAR图像目标识别. 电子与信息学报, 2008, 30(9): 2051-2054 . doi: 10.3724/SP.J.1146.2007.00334

  • 加载中
计量
  • PDF下载量:  279
  • 文章访问数:  221
  • HTML全文浏览量:  8
  • 引证文献数: 0
文章相关
  • 收稿日期:  2017-01-23
  • 录用日期:  2017-07-07
  • 刊出日期:  2017-10-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章