-
Advanced Search

Citation: Sinian JIN, Dianwu YUE, Qiuna YAN. Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1352-1358. doi: 10.11999/JEIT180228 shu

Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing

  • Corresponding author: Dianwu YUE, dwyue@dlmu.edu.cn
  • Received Date: 2018-03-09
    Accepted Date: 2019-04-07
    Available Online: 2019-06-01

Figures(2)

  • A massive MIMO full-duplex relaying system is considerd in this paper, in which multiple single-antenna sources simultaneously communicate with multiple single-antenna destinations using a single relay that is equipped with ${N_{{\mathop{\rm rx}\nolimits} }}$ receive antennas and ${N_{{\mathop{\rm tx}\nolimits} }}$ transmit antennas. Under imperfect Channel State Information (CSI) and hardware impairment, the relay processes the received and transmitted signals by means of Zero-Forcing (ZF) and uses Decode-and-Forward (DF) scheme. The closed-form expressions of achievable rate are deduced. Based on these expressions, the various power scaling laws can be obtained. It is shown that when the two numbers of the relay receive and transmit antennas go to infinity but with a fixed ratio, the system can maintain a desirable quality of service in the case of scaling the transmit powers of the sources, relay and pilots.
  • 加载中
    1. [1]

      MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092

    2. [2]

      NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848

    3. [3]

      HUANG Yongming, HE Shiwen, WANG Jiaheng, et al. Spectral and energy efficiency tradeoff for massive MIMO[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6991–7002. doi: 10.1109/TVT.2018.2824311

    4. [4]

      TRAN T X and TEH K C. Spectral and energy efficiency analysis for SLNR precoding in massive MIMO systems with imperfect CSI[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4017–4027. doi: 10.1109/TWC.2018.2819184

    5. [5]

      PIRZADEH H and SWINDLEHURST A L. Spectral efficiency of mixed-ADC massive MIMO[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3599–3613. doi: 10.1109/TSP.2018.2833807

    6. [6]

      ZHANG Xing, ZHONG Lin, and SABHARWAL A. Directional training for FDD massive MIMO[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5183–5197. doi: 10.1109/TWC.2018.2838600

    7. [7]

      NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair full-duplex relaying with massive arrays and linear processing[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1721–1737. doi: 10.1109/JSAC.2014.2330091

    8. [8]

      SHARMA E, BUDHIRAJA R, VASUDEVAN K, et al. Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization[J]. IEEE Transactions on Communications, 2018, 66(8): 3322–3340. doi: 10.1109/TCOMM.2018.2822273

    9. [9]

      XIE Wei, XIA Xiaochen, XU Youyun, et al. Massive MIMO full-duplex relaying with hardware impairments[J]. Journal of Communications and Networks, 2017, 19(4): 351–362. doi: 10.1109/JCN.2017.000059

    10. [10]

      JIN Sinian, YUE Dianwu, and NGUYEN H H. Power scaling laws of massive MIMO full-duplex relaying with hardware impairments[J]. IEEE Access, 2018, 6: 40860–40882. doi: 10.1109/ACCESS.2018.2857496

    11. [11]

      XU Kui, GAO Yuanyuan, XIE Wei, et al. Achievable rate of full-duplex massive MIMO relaying with hardware impairments[C]. Proceedings of 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 2015: 84–89.

    12. [12]

      ZHANG Jiayi, XUE Xipeng, BJÖRNSON E, et al. Spectral efficiency of multipair massive MIMO two-way relaying with hardware impairments[J]. IEEE Wireless Communications Letters, 2018, 7(1): 14–17. doi: 10.1109/LWC.2017.2750162

    13. [13]

      ZHANG Qi, QUEK T Q S, and JIN Shi. Scaling analysis for massive MIMO systems with hardware impairments in rician fading[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4536–4549. doi: 10.1109/TWC.2018.2827068

    14. [14]

      ZHU Jun, NG D W K, WANG Ning, et al. Analysis and design of secure massive MIMO systems in the presence of hardware impairments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 2001–2016. doi: 10.1109/TWC.2017.2659724

    15. [15]

      BIGUESH M and GERSHMAN A B. Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 884–893. doi: 10.1109/TSP.2005.863008

    16. [16]

      ZHANG Xinlin, MATTHAIOU M, COLDREY M, et al. Energy efficiency optimization in hardware-constrained large-scale MIMO systems[C]. Proceedings of the 11th International Symposium on Wireless Communications Systems, Barcelona, Spain, 2014: 992–996.

  • 加载中
    1. [1]

      Cai Chun-XiaoYang Wei-WeiCai Yue-Ming . Performance Analysis of Decode-and-forward Transmission with Relay Selection in Mixed Fading Channels. Journal of Electronics and Information Technology, 2010, 32(11): 2582-2587. doi: 10.3724/SP.J.1146.2009.01581

    2. [2]

      Gu Zhe-QiWei NingZhang Zhong-Pei . Robust Precoding in Massive MIMO Time Division Duplex Systems. Journal of Electronics and Information Technology, 2015, 37(5): 1180-1186. doi: 10.11999/JEIT141073

    3. [3]

      Gu Zhe-QiZhang Zhong-Pei . Reciprocity Calibration for Base Station Antenna in Massive MIMO Time Division Duplex Systems. Journal of Electronics and Information Technology, 2015, 37(2): 405-410. doi: 10.11999/JEIT140472

    4. [4]

      LI YongzhiTAO ChengLIU LiuLU YanpingLIU Kai . Base Station Selection Algorithm for Distributed Massive MIMO System over Rician Fading Channels. Journal of Electronics and Information Technology, 2016, 38(4): 856-862. doi: 10.11999/JEIT150811

    5. [5]

      CAO HaiyanYANG JingweiFANG XinXU Fangmin . Low Complexity Detection Algorithm Based on Two-diagonal Matrix Decomposition in Massive MIMO Systems. Journal of Electronics and Information Technology, 2018, 40(2): 416-420. doi: 10.11999/JEIT170498

    6. [6]

      LIU LiuLI YongzhiTAO ChengCHEN Houjin . Performance Analysis for One-bit Massive MIMO Systems Based on Large Scale Fading Model in Antenna-array Domain. Journal of Electronics and Information Technology, 2017, 39(6): 1515-1519. doi: 10.11999/JEIT161248

    7. [7]

      Wang WeiYu LiZhu Guang-XiLi Hui . A Novel Transmission Scheme of Multiple Cognitive Relay Based on Network Coding. Journal of Electronics and Information Technology, 2011, 33(4): 869-873. doi: 10.3724/SP.J.1146.2010.00830

    8. [8]

      HUANG TianyuMA LinhuaHU XingHUANG ShaochengSUN KangningLIU Shiping . Practical Hybrid Precoding Algorithm for Millimeter Wave Massive MIMO. Journal of Electronics and Information Technology, 2017, 39(8): 1788-1795. doi: 10.11999/JEIT161211

    9. [9]

      JIN LiangSONG HaotianZHONG ZhouXU Xiaoming . Adaptive Secure Transmission Strategy for Multiuser Massive MIMO. Journal of Electronics and Information Technology, 2018, 40(6): 1468-1475. doi: 10.11999/JEIT170974

    10. [10]

      Bin SHENShufeng ZHAOChun JIN . Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems. Journal of Electronics and Information Technology, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111

    11. [11]

      WU HaoweiZHAO JunboWEN GeOU Jinglan . OFDM Full-duplex Bidirectional DF Relaying System with I/Q Imbalance and Performance Analysis. Journal of Electronics and Information Technology, 2017, 39(3): 619-625. doi: 10.11999/JEIT160545

    12. [12]

      MA PimingLIANG SuiMA YanboXIONG HailiangYANG Yang . QoS-driven Power Allocation over Multicarrier Full-duplex-Relay Secure Communication System. Journal of Electronics and Information Technology, 2017, 39(4): 860-865. doi: 10.11999/JEIT160461

    13. [13]

      Wang Wen-yiYang Shu-yuanLiang Jun-liGao Li . Power Allocation for Cooperative Diversity with Multi-relays Based on Decode-and-Forward. Journal of Electronics and Information Technology, 2008, 30(3): 612-615. doi: 10.3724/SP.J.1146.2006.01294

    14. [14]

      WANG YiLIN YanLI ChunguoHUANG YongmingYANG Luxi . Energy-efficiency Optimization of Pilot Duration and Power Allocation for Downlink Massive MIMO FDD Systems. Journal of Electronics and Information Technology, 2017, 39(1): 16-23. doi: 10.11999/JEIT160226

    15. [15]

      FANG XinZHANG JianfengCAO HaiyanLIU ChaoPAN Peng . Dynamic Pilot Allocation in Massive MIMO System. Journal of Electronics and Information Technology, 2016, 38(8): 1901-1907. doi: 10.11999/JEIT151091

    16. [16]

      WANG YiLIN YanHUANG YongmingLI ChunguoYANG Luxi . Optimal Energy-efficient Design for Two-hop Massive MIMO Relaying Systems with Multi-pair Users. Journal of Electronics and Information Technology, 2017, 39(1): 1-8. doi: 10.11999/JEIT160245

    17. [17]

      Guan LuTang You-xiShao Shi-haiDeng Kai . Optimal Transmit Power Allocation for Asynchronous V-BLAST System Using Zero-Forcing Detecting. Journal of Electronics and Information Technology, 2010, 32(4): 786-789. doi: 10.3724/SP.J.1146.2009.00509

    18. [18]

      Cheng TAOWenbo ZHENGYongzhi LILiu LIU . Achievable Rate Analysis on Massive MIMO-OFDM Systems with Low-resolution ADC. Journal of Electronics and Information Technology, 2018, 40(10): 2294-2300. doi: 10.11999/JEIT180088

    19. [19]

      Li Xin-MinQiu Ling . Robust Coordinated Beamforming Design Based on Outage Probability for Massive MIMO. Journal of Electronics and Information Technology, 2015, 37(4): 848-854. doi: 10.11999/JEIT140817

    20. [20]

      Hu YingHuang Yong-mingYu FeiYang Lu-xi . Energy-efficient Resource Allocation Based on Multi-user Massive MIMO System. Journal of Electronics and Information Technology, 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088

Metrics
  • PDF Downloads(19)
  • Abstract views(522)
  • HTML views(227)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return