-
Advanced Search

Citation: Sinian JIN, Dianwu YUE, Qiuna YAN. Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1352-1358. doi: 10.11999/JEIT180228 shu

Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing

  • Corresponding author: Dianwu YUE, dwyue@dlmu.edu.cn
  • Received Date: 2018-03-09
    Accepted Date: 2019-04-07
    Available Online: 2019-06-01

Figures(2)

  • A massive MIMO full-duplex relaying system is considerd in this paper, in which multiple single-antenna sources simultaneously communicate with multiple single-antenna destinations using a single relay that is equipped with ${N_{{\mathop{\rm rx}\nolimits} }}$ receive antennas and ${N_{{\mathop{\rm tx}\nolimits} }}$ transmit antennas. Under imperfect Channel State Information (CSI) and hardware impairment, the relay processes the received and transmitted signals by means of Zero-Forcing (ZF) and uses Decode-and-Forward (DF) scheme. The closed-form expressions of achievable rate are deduced. Based on these expressions, the various power scaling laws can be obtained. It is shown that when the two numbers of the relay receive and transmit antennas go to infinity but with a fixed ratio, the system can maintain a desirable quality of service in the case of scaling the transmit powers of the sources, relay and pilots.
  • 加载中
    1. [1]

      MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092

    2. [2]

      NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848

    3. [3]

      HUANG Yongming, HE Shiwen, WANG Jiaheng, et al. Spectral and energy efficiency tradeoff for massive MIMO[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6991–7002. doi: 10.1109/TVT.2018.2824311

    4. [4]

      TRAN T X and TEH K C. Spectral and energy efficiency analysis for SLNR precoding in massive MIMO systems with imperfect CSI[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4017–4027. doi: 10.1109/TWC.2018.2819184

    5. [5]

      PIRZADEH H and SWINDLEHURST A L. Spectral efficiency of mixed-ADC massive MIMO[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3599–3613. doi: 10.1109/TSP.2018.2833807

    6. [6]

      ZHANG Xing, ZHONG Lin, and SABHARWAL A. Directional training for FDD massive MIMO[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5183–5197. doi: 10.1109/TWC.2018.2838600

    7. [7]

      NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair full-duplex relaying with massive arrays and linear processing[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1721–1737. doi: 10.1109/JSAC.2014.2330091

    8. [8]

      SHARMA E, BUDHIRAJA R, VASUDEVAN K, et al. Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization[J]. IEEE Transactions on Communications, 2018, 66(8): 3322–3340. doi: 10.1109/TCOMM.2018.2822273

    9. [9]

      XIE Wei, XIA Xiaochen, XU Youyun, et al. Massive MIMO full-duplex relaying with hardware impairments[J]. Journal of Communications and Networks, 2017, 19(4): 351–362. doi: 10.1109/JCN.2017.000059

    10. [10]

      JIN Sinian, YUE Dianwu, and NGUYEN H H. Power scaling laws of massive MIMO full-duplex relaying with hardware impairments[J]. IEEE Access, 2018, 6: 40860–40882. doi: 10.1109/ACCESS.2018.2857496

    11. [11]

      XU Kui, GAO Yuanyuan, XIE Wei, et al. Achievable rate of full-duplex massive MIMO relaying with hardware impairments[C]. Proceedings of 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 2015: 84–89.

    12. [12]

      ZHANG Jiayi, XUE Xipeng, BJÖRNSON E, et al. Spectral efficiency of multipair massive MIMO two-way relaying with hardware impairments[J]. IEEE Wireless Communications Letters, 2018, 7(1): 14–17. doi: 10.1109/LWC.2017.2750162

    13. [13]

      ZHANG Qi, QUEK T Q S, and JIN Shi. Scaling analysis for massive MIMO systems with hardware impairments in rician fading[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4536–4549. doi: 10.1109/TWC.2018.2827068

    14. [14]

      ZHU Jun, NG D W K, WANG Ning, et al. Analysis and design of secure massive MIMO systems in the presence of hardware impairments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 2001–2016. doi: 10.1109/TWC.2017.2659724

    15. [15]

      BIGUESH M and GERSHMAN A B. Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 884–893. doi: 10.1109/TSP.2005.863008

    16. [16]

      ZHANG Xinlin, MATTHAIOU M, COLDREY M, et al. Energy efficiency optimization in hardware-constrained large-scale MIMO systems[C]. Proceedings of the 11th International Symposium on Wireless Communications Systems, Barcelona, Spain, 2014: 992–996.

  • 加载中
    1. [1]

      Xinhua LUCarles Navarro MANCHÓNZhongyong WANGChuanzong ZHANG . Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180676

    2. [2]

      Kai LIUGuichao CHENCheng TAOTao ZHOU . Performance Analysis of Massive MIMO-OFDM System with Mixed-precision Analog-to-digital Converter. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181136

    3. [3]

      Yi LIUJiong WUPu YANGHaihan NANHailin ZHANG . High Spectrum Efficiency Full-duplex Two-way Relay Scheme for OFDM. Journal of Electronics and Information Technology, 2019, 41(2): 402-408. doi: 10.11999/JEIT180451

    4. [4]

      Ronglan HUANGYun LIUQishang LIWen TANG . Power Allocation Optimization of Cooperative Relaying Systems Using Non-orthogonal Multiple Access. Journal of Electronics and Information Technology, 2019, 41(8): 1909-1915. doi: 10.11999/JEIT180842

    5. [5]

      Xiangdong JIAShanshan JIQiaoling FANXiaorong YANG . Backhaul Scheme and Performance Study of Full-duplex Multi-tier Heterogeneous Networks Based on Non-orthogonal Multiple Access. Journal of Electronics and Information Technology, 2019, 41(4): 945-951. doi: 10.11999/JEIT180463

    6. [6]

      Junzheng JIANGYangjian LIHaibing ZHAOShan OUYANG . A Distributed Node Localization Algorithm for Large Scale Sensor Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181101

    7. [7]

      Xiaolong LIU . Application of Improved Multiverse Algorithm to Large Scale Optimization Problems. Journal of Electronics and Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751

    8. [8]

      Jianhua PENGShuai ZHANGXiaoming XUKaizhi HUANGLiang JIN . A Noise Injection Scheme Resistant to Massive MIMO Eavesdropper in IoT. Journal of Electronics and Information Technology, 2019, 41(1): 67-73. doi: 10.11999/JEIT180342

    9. [9]

      Peizhong XIERui SUNTing LI . Hybrid Precoding Algorithm Based on Successive Interference Cancellation for Millimeter Wave MIMO Systems. Journal of Electronics and Information Technology, 2019, 41(2): 409-416. doi: 10.11999/JEIT180379

    10. [10]

      Jianzhong ZHANGHeqiang MUShuliang WENYanbing LIHongwei GAO . Anti-Intermittent Sampling Repeater Jamming Method Based on LFM Segmented Pulse Compression. Journal of Electronics and Information Technology, 2019, 41(7): 1712-1720. doi: 10.11999/JEIT180851

    11. [11]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(10): 2325-2333. doi: 10.11999/JEIT190069

    12. [12]

      Weiqing YAOBenshun YI . A Novel Encoding and Decoding Method of LT Codes and Application to Cognitive Radio. Journal of Electronics and Information Technology, 2019, 41(3): 571-579. doi: 10.11999/JEIT180427

    13. [13]

      Qiong WANGYajie LUOSifang LI . Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check. Journal of Electronics and Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

    14. [14]

      Bingji ZHAOQingjun ZHANGChao DAILiping LIUZhihua TANGWeiping SHUChong NI . A New Prompt 2-D Attitude Steering Approach for Zero Doppler Centroid of GEOsynchronous SAR. Journal of Electronics and Information Technology, 2019, 41(4): 763-769. doi: 10.11999/JEIT180643

    15. [15]

      Zhaojun WULimin ZHANGZhaogen ZHONGKeyuan YUYuncheng YANG . Blind Recognition of Code Length and Synchronization of Turbo Codes on Trellis Termination at Low SNR. Journal of Electronics and Information Technology, 2019, 41(9): 2063-2070. doi: 10.11999/JEIT180903

    16. [16]

      Xiaoyu CHENGuanmin LIDeming KONGYubo LI . Research on the Constructions of Gaussian Integer Zero Correlation Zone Sequence Set. Journal of Electronics and Information Technology, 2019, 41(6): 1420-1426. doi: 10.11999/JEIT180703

    17. [17]

      Yuejun ZHANGJiawei WANGZhao PANXiaowei ZHANGPengjun WANG . Hardware Security for Multi IPs Protection Based on Orthogonal Obfuscation. Journal of Electronics and Information Technology, 2019, 41(8): 1847-1854. doi: 10.11999/JEIT180898

    18. [18]

      Yuxiang HUHongwei FANJulong LANTong DUAN . A Model for Virtualized Network Function Placement with Hardware Acceleration Support. Journal of Electronics and Information Technology, 2019, 41(8): 1893-1901. doi: 10.11999/JEIT180861

    19. [19]

      Huabiao QINQinping CAO . Design of Convolutional Neural Networks Hardware Acceleration Based on FPGA. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190058

    20. [20]

      Xiaohan WANGTao WANGXiongwei LIYang ZHANGChangyang HUANG . A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190004

Metrics
  • PDF Downloads(16)
  • Abstract views(217)
  • HTML views(121)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return