-
Advanced Search

Citation: Sinian JIN, Dianwu YUE, Qiuna YAN. Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1352-1358. doi: 10.11999/JEIT180228 shu

Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing

  • Corresponding author: Dianwu YUE, dwyue@dlmu.edu.cn
  • Received Date: 2018-03-09
    Accepted Date: 2019-04-07
    Available Online: 2019-06-01

Figures(2)

  • A massive MIMO full-duplex relaying system is considerd in this paper, in which multiple single-antenna sources simultaneously communicate with multiple single-antenna destinations using a single relay that is equipped with ${N_{{\mathop{\rm rx}\nolimits} }}$ receive antennas and ${N_{{\mathop{\rm tx}\nolimits} }}$ transmit antennas. Under imperfect Channel State Information (CSI) and hardware impairment, the relay processes the received and transmitted signals by means of Zero-Forcing (ZF) and uses Decode-and-Forward (DF) scheme. The closed-form expressions of achievable rate are deduced. Based on these expressions, the various power scaling laws can be obtained. It is shown that when the two numbers of the relay receive and transmit antennas go to infinity but with a fixed ratio, the system can maintain a desirable quality of service in the case of scaling the transmit powers of the sources, relay and pilots.
  • 加载中
    1. [1]

      MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092

    2. [2]

      NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848

    3. [3]

      HUANG Yongming, HE Shiwen, WANG Jiaheng, et al. Spectral and energy efficiency tradeoff for massive MIMO[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6991–7002. doi: 10.1109/TVT.2018.2824311

    4. [4]

      TRAN T X and TEH K C. Spectral and energy efficiency analysis for SLNR precoding in massive MIMO systems with imperfect CSI[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4017–4027. doi: 10.1109/TWC.2018.2819184

    5. [5]

      PIRZADEH H and SWINDLEHURST A L. Spectral efficiency of mixed-ADC massive MIMO[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3599–3613. doi: 10.1109/TSP.2018.2833807

    6. [6]

      ZHANG Xing, ZHONG Lin, and SABHARWAL A. Directional training for FDD massive MIMO[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5183–5197. doi: 10.1109/TWC.2018.2838600

    7. [7]

      NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair full-duplex relaying with massive arrays and linear processing[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1721–1737. doi: 10.1109/JSAC.2014.2330091

    8. [8]

      SHARMA E, BUDHIRAJA R, VASUDEVAN K, et al. Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization[J]. IEEE Transactions on Communications, 2018, 66(8): 3322–3340. doi: 10.1109/TCOMM.2018.2822273

    9. [9]

      XIE Wei, XIA Xiaochen, XU Youyun, et al. Massive MIMO full-duplex relaying with hardware impairments[J]. Journal of Communications and Networks, 2017, 19(4): 351–362. doi: 10.1109/JCN.2017.000059

    10. [10]

      JIN Sinian, YUE Dianwu, and NGUYEN H H. Power scaling laws of massive MIMO full-duplex relaying with hardware impairments[J]. IEEE Access, 2018, 6: 40860–40882. doi: 10.1109/ACCESS.2018.2857496

    11. [11]

      XU Kui, GAO Yuanyuan, XIE Wei, et al. Achievable rate of full-duplex massive MIMO relaying with hardware impairments[C]. Proceedings of 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 2015: 84–89.

    12. [12]

      ZHANG Jiayi, XUE Xipeng, BJÖRNSON E, et al. Spectral efficiency of multipair massive MIMO two-way relaying with hardware impairments[J]. IEEE Wireless Communications Letters, 2018, 7(1): 14–17. doi: 10.1109/LWC.2017.2750162

    13. [13]

      ZHANG Qi, QUEK T Q S, and JIN Shi. Scaling analysis for massive MIMO systems with hardware impairments in rician fading[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4536–4549. doi: 10.1109/TWC.2018.2827068

    14. [14]

      ZHU Jun, NG D W K, WANG Ning, et al. Analysis and design of secure massive MIMO systems in the presence of hardware impairments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 2001–2016. doi: 10.1109/TWC.2017.2659724

    15. [15]

      BIGUESH M and GERSHMAN A B. Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 884–893. doi: 10.1109/TSP.2005.863008

    16. [16]

      ZHANG Xinlin, MATTHAIOU M, COLDREY M, et al. Energy efficiency optimization in hardware-constrained large-scale MIMO systems[C]. Proceedings of the 11th International Symposium on Wireless Communications Systems, Barcelona, Spain, 2014: 992–996.

  • 加载中
    1. [1]

      Xinhua LUCarles Navarro MANCHÓNZhongyong WANGChuanzong ZHANG . Channel Estimation Algorithm Using Temporal-Spatial Structure for Up-Link of Massive MIMO Systems. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180676

    2. [2]

      Cheng TAOGuichao CHENKai LIUTao ZHOU . Performance Analysis of Massive MIMO-OFDM System with Hybrid-Precision Analog-to-Digital Converter. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181136

    3. [3]

      Xiaolong LIU . Application of Improved Multiverse Algorithm to Large Scale Optimization Problems. Journal of Electronics and Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751

    4. [4]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    5. [5]

      Xiaohan WANGTao WANGXiongwei LIYang ZHANGChangyang HUANG . A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190004

    6. [6]

      Qiong WANGYajie LUOSifang LI . Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check. Journal of Electronics and Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

    7. [7]

      Jianzhong ZHANGHeqiang MUShuliang WENYanbing LIHongwei GAO . Anti-Intermittent Sampling Repeater Jamming Method Based on LFM Segmented Pulse Compression. Journal of Electronics and Information Technology, 2019, 41(7): 1712-1720. doi: 10.11999/JEIT180851

    8. [8]

      Chunsheng TIANZhihong QIANXin WANGXue WANG . Research on Channel Selection and Power Control Strategy for D2D Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190149

    9. [9]

      Lun TANGRunlin MAHeng YANGQianbin CHEN . Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180770

    10. [10]

      Yan ZHANGJianhua CHENMeng TANG . Distributed LT Codes on Multiple Layers Networks. Journal of Electronics and Information Technology, 2019, 41(7): 1548-1554. doi: 10.11999/JEIT180804

    11. [11]

      Baoqing XUYongbo ZHAOXiaojiao PANG . Joint Real-valued Beamspace-based Method for Angle Estimation in Bistatic MIMO Radar. Journal of Electronics and Information Technology, 2019, 41(7): 1721-1727. doi: 10.11999/JEIT180766

    12. [12]

      Hongyan ZANGHuifang HUANGHongyu CHAI . Homogenization Method for the Quadratic Polynomial Chaotic System. Journal of Electronics and Information Technology, 2019, 41(7): 1618-1624. doi: 10.11999/JEIT180735

    13. [13]

      Guangwu CHENJianhao CHENGJuhua YANGHao LIULinjing ZHANG . Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter. Journal of Electronics and Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171

    14. [14]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    15. [15]

      Kaihui TUZhihong HUANGZhengrong HOUHaigang YANG . Research on Efficient FPGA Bitstream Generation System Based on Mode Matching and Hierarchical Mapping. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190143

Metrics
  • PDF Downloads(14)
  • Abstract views(145)
  • HTML views(96)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return