高级搜索

基于多级阻塞的稳健相干自适应波束形成

唐敏 齐栋 刘成城 赵拥军

引用本文: 唐敏, 齐栋, 刘成城, 赵拥军. 基于多级阻塞的稳健相干自适应波束形成[J]. 电子与信息学报, 2019, 41(7): 1705-1711. doi: 10.11999/JEIT180332 shu
Citation:  Min TANG, Dong QI, Chengcheng LIU, Yongjun ZHAO. New Adaptive Beamformer for Coherent Interference Based on Multistage Blocking[J]. Journal of Electronics and Information Technology, 2019, 41(7): 1705-1711. doi: 10.11999/JEIT180332 shu

基于多级阻塞的稳健相干自适应波束形成

    作者简介: 唐敏: 女,1994年生,博士生,研究方向为阵列信号处理和波束形成技术;
    齐栋: 男,1993年生,硕士生,研究方向为阵列信号处理和DOA估计;
    刘成城: 男,1986年生,讲师,研究方向为数字波束形成技术;
    赵拥军: 男,1964年生,教授,博士生导师,研究方向为雷达信号处理、阵列信号处理
    通讯作者: 唐敏,tangminmvp@126.com
  • 基金项目: 国家自然科学基金(61703433)

摘要: 针对期望信号波达角(DOA)估计误差较大时相干波束形成性能下降的问题,该文提出一种基于多级阻塞的稳健相干自适应波束形成算法。该算法首先定义阻塞矩阵,推导多级阻塞原理,并利用其滤除阵列接收信号中的期望信号;然后给出空间中只存在期望信号时,子阵与全阵间阵列流型的映射关系,据此推导全阵扩展变换,并证明其在干扰信号存在条件下的有效性;最终利用扩展变换获取全阵最优权矢量,实现相干波束形成。该算法对期望信号波达角估计误差稳健,且无需干扰信号来向的先验信息,同时可以有效避免阵列孔径的损失。仿真分析验证了算法的优越性和理论分析的有效性。

English

    1. [1]

      GABRIEL W F. Adaptive arrays-an introduction[J]. Proceedings of the IEEE, 1976, 64(2): 239–272. doi: 10.1109/proc.1976.10095

    2. [2]

      RUAN Hang and DE LAMARE R C. Robust adaptive beamforming based on low-rank and cross-correlation techniques[C]. Proceedings of 2015 European Signal Processing Conference, Nice, France, 2015: 854–858.

    3. [3]

      SINGH H and JHA R M. Trends in adaptive array processing[J]. International Journal of Antennas and Propagation, 2012, 2012: 361768. doi: 10.1155/2012/361768

    4. [4]

      BRESLER Y, REDDY V U, and KAILATH T. Optimum beamforming for coherent signal and interferences[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(6): 833–843. doi: 10.1109/29.1594

    5. [5]

      ZHANG Linrang, SO H C, PING L, et al. Adaptive multiple-beamformers for reception of coherent signals with known directions in the presence of uncorrelated interferences[J]. Signal Processing, 2004, 84(10): 1861–1873. doi: 10.1016/j.sigpro.2004.06.012

    6. [6]

      AGRAWAL M, ABRAHAMSSON R, and ÅHGREN P. Optimum beamforming for a nearfield source in signal-correlated interferences[J]. Signal Processing, 2006, 86(5): 915–923. doi: 10.1016/j.sigpro.2005.07.017

    7. [7]

      WANG Cheng, TANG Jun, and WU Ying. Eigenspace-based beamforming technique for multipath coherent signals reception[J]. Signal Processing, 2016, 128: 150–154. doi: 10.1016/j.sigpro.2016.03.028

    8. [8]

      LEE T S and LIN T T. Coherent interference suppression with complementally transformed adaptive beamformer[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 609–617. doi: 10.1109/8.668901

    9. [9]

      WIDROW B, DUVALL K, GOOCH R, et al. Signal cancellation phenomena in adaptive antennas: Causes and cures[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3): 469–478. doi: 10.1109/TAP.1982.1142804

    10. [10]

      CHOI Y H. Duvall-structure-based fast adaptive beamforming for coherent interference cancellation[J]. IEEE Signal Processing Letters, 2007, 14(10): 739–741. doi: 10.1109/LSP.2007.898322

    11. [11]

      路鸣. 窄带相干干扰自适应抑制的裂相变换法[J]. 电子学报, 1993, 21(4): 13–20. doi: 10.3321/j.issn:0372-2112.1993.04.003
      LU Ming. Coherent interference suppression by using split-polarity transformation[J]. Acta Electronica Sinica, 1993, 21(4): 13–20. doi: 10.3321/j.issn:0372-2112.1993.04.003

    12. [12]

      黄磊. 非理想条件下的自适应波束形成算法研究[D]. [博士论文], 中国科学技术大学, 2016: 7–8.
      HUANG Lei. Adaptive beamforming algorithms under nonideal conditions[D]. [Ph.D. dissertation], University of Science and Technology of China, 2016: 7–8.

    13. [13]

      黄超, 张剑云, 朱家兵, 等. 一种相干信号自适应波束形成零陷展宽算法[J]. 现代雷达, 2016, 38(10): 23–28.
      HUANG Chao, ZHANG Jianyun, ZHU Jiabing, et al. Adaptive beamforming of coherent signals with null widening[J]. Modern Radar, 2016, 38(10): 23–28.

    14. [14]

      MAHESWARA REDDY K and REDDY V U. Analysis of spatial smoothing with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1999, 47(6): 1726–1730. doi: 10.1109/78.765150

    15. [15]

      吴向东, 马仑, 梁中华. 一种改进的加权空间平滑算法[J]. 数据采集与处理, 2015, 30(4): 824–829.
      WU Xiangdong, MA Lun, and LIANG Zhonghua. Improved weighted spatial smoothing algorithm[J]. Journal of Data Acquisition and Processing, 2015, 30(4): 824–829.

    16. [16]

      ZHUANG Jie, YE Qian, TAN Qiushi, et al. Low-complexity variable loading for robust adaptive beamforming[J]. Electronics Letters, 2016, 52(5): 338–340. doi: 10.1049/el.2015.3844

    17. [17]

      周围, 张德民, 吴波, 等. 相干环境下LCMV自适应阵列抗干扰问题研究[J]. 电子与信息学报, 2007, 29(7): 1604–1607.
      ZHOU Wei, ZHANG Demin, WU Bo, et al. Study on interference suppression for LCMV adaptive array in coherent environment[J]. Journal of Electronics &Information Technology, 2007, 29(7): 1604–1607.

    18. [18]

      KUNG S, LO C, and FOKA R. A Toeplitz approximation approach to coherent source direction finding[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 1986: 193–196.

    19. [19]

      LIU Yanyan, SUN Xiaoying, and ZHAO Shishun. A covariance matrix shrinkage method with Toeplitz rectified target for DOA estimation under the uniform linear array[J]. AEU - International Journal of Electronics and Communications, 2017, 81: 50–55. doi: 10.1016/j.aeue.2017.06.026

    20. [20]

      WU Xiaohuan, ZHU Weiping, and YAN Jun. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226

    1. [1]

      席博, 洪涛, 张更新. 卫星物联网场景下基于节点选择的协作波束成形技术研究. 电子与信息学报, 2020, 42(0): 1-9.

  • 图 1  Duvall阵列结构示意图

    图 2  不同$k$值下输出SINR随DOA估计误差的变化曲线

    图 3  波束形成图

    图 4  输出SINR的关系曲线

  • 加载中
图(4)
计量
  • PDF下载量:  34
  • 文章访问数:  534
  • HTML全文浏览量:  276
文章相关
  • 通讯作者:  唐敏, tangminmvp@126.com
  • 收稿日期:  2018-04-11
  • 录用日期:  2019-05-16
  • 网络出版日期:  2019-05-25
  • 刊出日期:  2019-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章