-
Advanced Search

Citation: Jian WANG, Yue HUANG, Guosheng ZHAO, Zhongnan ZHAO. The Incentive Model for Mobile Crowd Sensing Oriented to Differences in Mission Costs[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1503-1509. doi: 10.11999/JEIT180640 shu

The Incentive Model for Mobile Crowd Sensing Oriented to Differences in Mission Costs

  • Corresponding author: Jian WANG, wangjianlydia@163.com
  • Received Date: 2018-07-02
    Accepted Date: 2018-12-18
    Available Online: 2019-06-01

Figures(8) / Tables(2)

  • To solve the problem of insufficient number of participants and poor data quality in the sensing mission, a mobile crowd sensing incentive model for mission cost difference is proposed. First of all, the fuzzy reasoning method is used to analyze the impact of data quantity, environmental conditions and equipment consumption on mission cost, and the sensing mission is divided into different levels on the basis of cost difference. Meanwhile, the method is used to prepare a budget for the requester and give the participant an appropriate reward. Then, the sensing mission is assigned to more appropriate participants to complete the sensing mission and upload the sensing data through credibility assessment and participants’ preference. Finally, the sensing data uploaded by participants is evaluated, and the credibility of participants is updated. Besides, the participants are paid according to the cost level of perceived missions. The simulation experiments based on the real data set show that the model can recruit more users to participate in the sensing mission effectively and promote participants to upload high-quality sensing data by using the mutual influence between different modules.
  • 加载中
    1. [1]

      YANG Hongming, DENG Youjun, QIU Jing, et al. Electric vehicle route selection and charging navigation strategy based on crowd sensing[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2214–2226. doi: 10.1109/TII.2017.2682960

    2. [2]

      CARDONE G, CIRRI A, CORRADI A, et al. The participact mobile crowd sensing living lab: The testbed for smart cities[J]. IEEE Communications Magazine, 2014, 52(10): 78–85. doi: 10.1109/MCOM.2014.691740

    3. [3]

      DETERDING S, DAN D, KHALED R, et al. From game design elements to gamefulness: defining " gameification”[C]. Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 2011: 9–15.

    4. [4]

      KAWAJIRI R, SHIMOSAKA M, and KAHIMA H. Steered crowd sensing: Incentive design towards quality-oriented piace-centric crowd sensing[C]. ACM International Joint Conference on Pervasive & Ubiquitous Computing, Seattle, USA, 2014: 691–701.

    5. [5]

      JAIMES L G, VERGARA-LAURENS I J, and RAIJ A. A survey of incentive techniques for mobile crowd sensing[J]. IEEE Internet Things Journal, 2015, 2(5): 370–380. doi: 10.1109/JIOT.2015.2409151

    6. [6]

      CHESSA S, CORRADI A, FOSCHINI L, et al. Empowering mobile crowdsensing through social and ad hoc networking[J]. IEEE Communications Magazine, 2016, 54(7): 108–114. doi: 10.1109/MCOM.2016.7509387

    7. [7]

      YANG Guang, HE Shibo, SHI Zhiguo, et al. Promoting cooperation by the social incentive mechanism in mobile crowdsensing[J]. IEEE Communications Magazine, 2017, 55(3): 86–92. doi: 10.1109/MCOM.2017.1600690CM

    8. [8]

      LEE J S and HOH B. Dynamic pricing incentive for participatory sensing[J]. Pervasive and Mobile Computing, 2010, 6(6): 693–708. doi: 10.1016/j.pmcj.2010.08.006

    9. [9]

      LUO Shuyun, SUN Yongmei, JI Yuefeng, et al. Stackelberg game based incentive mechanisms for multiple collaborative tasks in mobile crowd sensing[J]. Mobile Networks and Applications, 2016, 21(3): 506–522. doi: 10.1007/s11036-015-0659-3

    10. [10]

      KRONTIRIS I and ALBERS A. Monetary incentives in participatory sensing using multi-attributive auctions[J]. International Journal of Parallel, Emergent and Distributed Systems, 2012, 27(4): 317–336. doi: 10.1080/17445760.2012.686170

    11. [11]

      WEN Yutian, SHI Jinyu, ZHANG Qi, et al. Quality-driven auction based incentive mechanism for mobile crowd sending[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4203–4214. doi: 10.1109/TVT.2014.2363842

    12. [12]

      ZHAO Dong, LI Xiangyang, and MA Huadong. Budget-feasible online incentive mechanisms for crowdsourcing tasks truthfully[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 647–661. doi: 10.1109/TNET.2014.2379281

    13. [13]

      POURYAZDAN M, KANTARIC B, SOYATA T, et al. Anchor-assisted and vote-based trustworthiness assurance in smart city crowdsensing[J]. IEEE Access, 2016, 4: 529–541. doi: 10.1109/ACCESS.2016.2519820

    14. [14]

      POURYAZDAN M, KANTARIC B, SOYATA T, et al. Quantifying user reputation scores, data trustworthiness, and user incentives in mobile crowd-sending[J]. IEEE Access, 2017, 5: 1382–1397. doi: 10.1109/ACCESS.2017.2660461

    15. [15]

      吴垚, 曾菊儒, 彭辉, 等. 群智感知激励机制研究综述[J]. 软件学报, 2016, 27(8): 2025–2047. doi: 10.13328/j.cnki.jos.005049
      WU Yao, ZENG Juru, PENG Hui, et al. Survey on incentive mechanisms for crowd sending[J]. Journal of Software, 2016, 27(8): 2025–2047. doi: 10.13328/j.cnki.jos.005049

    16. [16]

      ZHENG Yu, XIE Xing, and MA Meiying. GeoLife: A colaborative social networking service among user, location and trajectory[J]. IEEE Data Engineering Billetin, 2010, 33(2): 32–40. doi: 10.1.1.165.4216

    17. [17]

      南文倩, 郭斌, 陈荟慧, 等. 基于跨空间多元交互的群智感知动态激励模型[J]. 计算机学报, 2015, 38(12): 2412–2425. doi: 10.11897/SP.J.1016.2017.01872
      NAN Wenqian, GUO Bin, CHEN Huihui, et al. Multitask-oriented participant selection in mobile crowd sensing[J]. Chinese Journal of Computer, 2015, 38(12): 2412–2425. doi: 10.11897/SP.J.1016.2017.01872

  • 加载中
    1. [1]

      Guosheng ZHAOHui ZHANGJian WANG . A Mobile Crowdsensing Data Security Delivery Model Based on Tangle Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190370

    2. [2]

      Haibo ZHANGHu LIShanxue CHENXiaofan HE . Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation. Journal of Electronics and Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592

    3. [3]

      Huanlin LIUZhenyu LINXin WANGYong CHENMin XIANGYue MA . A Diverse Virtual Optical Network Mapping Strategy Based on Security Awareness in Elastic Optical Networks. Journal of Electronics and Information Technology, 2019, 41(2): 424-432. doi: 10.11999/JEIT180335

    4. [4]

      Bin ZHAOChuangbai XIAOWenyin ZHANGXue GU . Incentive and Restraint Mechanism of Rewards and Punishment in Access Control Based on Game Theory. Journal of Electronics and Information Technology, 2019, 41(4): 1002-1009. doi: 10.11999/JEIT180406

    5. [5]

      Qiang DUKehao ZHANGLi KEChenyang WANG . Research on Synchronous Excitation and Detection Method for Synthetic Multi-frequency Magnetic Induction Signals. Journal of Electronics and Information Technology, 2019, 41(9): 2108-2114. doi: 10.11999/JEIT181083

    6. [6]

      Guangming TANGMingming JIANGYi SUN . Adaptive Color Image Steganography Based on Dynamic Distortion Modification. Journal of Electronics and Information Technology, 2019, 41(3): 656-665. doi: 10.11999/JEIT180388

    7. [7]

      Shanchao YANGKangsheng TIANRenzheng LIUYujun ZHENG . Scheduling Algorithm Based on Value Optimization for Phased Array Radar. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190147

    8. [8]

      Yanhao CHENZhongyan LIULiyan ZHOU . Optical Image Encryption Algorithm Based on Differential Mixed Mask and Chaotic Gyrator Transform. Journal of Electronics and Information Technology, 2019, 41(4): 888-895. doi: 10.11999/JEIT180456

    9. [9]

      Ming ZHAOHan YANGaofeng CAOXinhong LIU . Robust Recommendation Algorithm Based on Core User Extraction with User Trust and Similarity. Journal of Electronics and Information Technology, 2019, 41(1): 180-186. doi: 10.11999/JEIT180142

    10. [10]

      Lei YEYong WANGQiang YANGWeibo DENG . High Frequency Surface Wave Radar Detector Based on Log-determinant Divergence and Symmetrized Log-determinant Divergence. Journal of Electronics and Information Technology, 2019, 41(8): 1931-1938. doi: 10.11999/JEIT181078

    11. [11]

      Zibin DAITongzhou QU . Task Scheduling Technology for Coarse-grained Dynamic Reconfigurable System Based on Configuration Prefetching and Reuse. Journal of Electronics and Information Technology, 2019, 41(6): 1458-1465. doi: 10.11999/JEIT180831

    12. [12]

      Baiqiang YINShudong WANGYigang HELei ZUOBing LIZhen CHENG . Electromagnetic Environment Complex Evaluation Algorithm Based on Fast S-transform and Time-frequency Space Model. Journal of Electronics and Information Technology, 2019, 41(1): 195-201. doi: 10.11999/JEIT180256

    13. [13]

      Lingbo MENGXiurui GENG . A Hyperspectral Imagery Anomaly Detection Algorithm Based on Cokurtosis Tensor. Journal of Electronics and Information Technology, 2019, 41(1): 150-155. doi: 10.11999/JEIT180280

    14. [14]

      Renzheng LIUKangsheng TIANFuqiang PENGHao LI . Quality Analysis of Early Warning Radar Intelligence Based on Asymmetrical Proximity. Journal of Electronics and Information Technology, 2019, 41(1): 130-135. doi: 10.11999/JEIT180116

    15. [15]

      Kai WANGShuxin LIUHongchang CHENXing LI . A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes. Journal of Electronics and Information Technology, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553

    16. [16]

      Jinfu XUJin WUJunwei LITongzhou QUYongxing DONG . Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism. Journal of Electronics and Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775

    17. [17]

      Zengwei LÜZhenchun WEIJianghong HANRenhao SUNChengkai XIA . A Mobile Charging and Data Collecting Algorithm Based on Multi-objective Optimization. Journal of Electronics and Information Technology, 2019, 41(8): 1877-1884. doi: 10.11999/JEIT180897

    18. [18]

      Xinyu WANGZhiying LIShuai SHAOZhigang YU . Robust Application Mapping for Networks-on-chip Considering Uncertainty of Tasks. Journal of Electronics and Information Technology, 2019, 41(5): 1152-1159. doi: 10.11999/JEIT180600

    19. [19]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    20. [20]

      Xiaoni DULi LIFujun ZHANG . Linear Complexity of Binary Sequences Derived from Euler Quotients Modulo 2pm. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190071

Metrics
  • PDF Downloads(23)
  • Abstract views(499)
  • HTML views(231)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return