-
Advanced Search

Citation: Jian WANG, Yue HUANG, Guosheng ZHAO, Zhongnan ZHAO. The Incentive Model for Mobile Crowd Sensing Oriented to Differences in Mission Costs[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1503-1509. doi: 10.11999/JEIT180640 shu

The Incentive Model for Mobile Crowd Sensing Oriented to Differences in Mission Costs

  • Corresponding author: Jian WANG, wangjianlydia@163.com
  • Received Date: 2018-07-02
    Accepted Date: 2018-12-18
    Available Online: 2019-06-01

Figures(8) / Tables(2)

  • To solve the problem of insufficient number of participants and poor data quality in the sensing mission, a mobile crowd sensing incentive model for mission cost difference is proposed. First of all, the fuzzy reasoning method is used to analyze the impact of data quantity, environmental conditions and equipment consumption on mission cost, and the sensing mission is divided into different levels on the basis of cost difference. Meanwhile, the method is used to prepare a budget for the requester and give the participant an appropriate reward. Then, the sensing mission is assigned to more appropriate participants to complete the sensing mission and upload the sensing data through credibility assessment and participants’ preference. Finally, the sensing data uploaded by participants is evaluated, and the credibility of participants is updated. Besides, the participants are paid according to the cost level of perceived missions. The simulation experiments based on the real data set show that the model can recruit more users to participate in the sensing mission effectively and promote participants to upload high-quality sensing data by using the mutual influence between different modules.
  • 加载中
    1. [1]

      YANG Hongming, DENG Youjun, QIU Jing, et al. Electric vehicle route selection and charging navigation strategy based on crowd sensing[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2214–2226. doi: 10.1109/TII.2017.2682960

    2. [2]

      CARDONE G, CIRRI A, CORRADI A, et al. The participact mobile crowd sensing living lab: The testbed for smart cities[J]. IEEE Communications Magazine, 2014, 52(10): 78–85. doi: 10.1109/MCOM.2014.691740

    3. [3]

      DETERDING S, DAN D, KHALED R, et al. From game design elements to gamefulness: defining " gameification”[C]. Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 2011: 9–15.

    4. [4]

      KAWAJIRI R, SHIMOSAKA M, and KAHIMA H. Steered crowd sensing: Incentive design towards quality-oriented piace-centric crowd sensing[C]. ACM International Joint Conference on Pervasive & Ubiquitous Computing, Seattle, USA, 2014: 691–701.

    5. [5]

      JAIMES L G, VERGARA-LAURENS I J, and RAIJ A. A survey of incentive techniques for mobile crowd sensing[J]. IEEE Internet Things Journal, 2015, 2(5): 370–380. doi: 10.1109/JIOT.2015.2409151

    6. [6]

      CHESSA S, CORRADI A, FOSCHINI L, et al. Empowering mobile crowdsensing through social and ad hoc networking[J]. IEEE Communications Magazine, 2016, 54(7): 108–114. doi: 10.1109/MCOM.2016.7509387

    7. [7]

      YANG Guang, HE Shibo, SHI Zhiguo, et al. Promoting cooperation by the social incentive mechanism in mobile crowdsensing[J]. IEEE Communications Magazine, 2017, 55(3): 86–92. doi: 10.1109/MCOM.2017.1600690CM

    8. [8]

      LEE J S and HOH B. Dynamic pricing incentive for participatory sensing[J]. Pervasive and Mobile Computing, 2010, 6(6): 693–708. doi: 10.1016/j.pmcj.2010.08.006

    9. [9]

      LUO Shuyun, SUN Yongmei, JI Yuefeng, et al. Stackelberg game based incentive mechanisms for multiple collaborative tasks in mobile crowd sensing[J]. Mobile Networks and Applications, 2016, 21(3): 506–522. doi: 10.1007/s11036-015-0659-3

    10. [10]

      KRONTIRIS I and ALBERS A. Monetary incentives in participatory sensing using multi-attributive auctions[J]. International Journal of Parallel, Emergent and Distributed Systems, 2012, 27(4): 317–336. doi: 10.1080/17445760.2012.686170

    11. [11]

      WEN Yutian, SHI Jinyu, ZHANG Qi, et al. Quality-driven auction based incentive mechanism for mobile crowd sending[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4203–4214. doi: 10.1109/TVT.2014.2363842

    12. [12]

      ZHAO Dong, LI Xiangyang, and MA Huadong. Budget-feasible online incentive mechanisms for crowdsourcing tasks truthfully[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 647–661. doi: 10.1109/TNET.2014.2379281

    13. [13]

      POURYAZDAN M, KANTARIC B, SOYATA T, et al. Anchor-assisted and vote-based trustworthiness assurance in smart city crowdsensing[J]. IEEE Access, 2016, 4: 529–541. doi: 10.1109/ACCESS.2016.2519820

    14. [14]

      POURYAZDAN M, KANTARIC B, SOYATA T, et al. Quantifying user reputation scores, data trustworthiness, and user incentives in mobile crowd-sending[J]. IEEE Access, 2017, 5: 1382–1397. doi: 10.1109/ACCESS.2017.2660461

    15. [15]

      吴垚, 曾菊儒, 彭辉, 等. 群智感知激励机制研究综述[J]. 软件学报, 2016, 27(8): 2025–2047. doi: 10.13328/j.cnki.jos.005049
      WU Yao, ZENG Juru, PENG Hui, et al. Survey on incentive mechanisms for crowd sending[J]. Journal of Software, 2016, 27(8): 2025–2047. doi: 10.13328/j.cnki.jos.005049

    16. [16]

      ZHENG Yu, XIE Xing, and MA Meiying. GeoLife: A colaborative social networking service among user, location and trajectory[J]. IEEE Data Engineering Billetin, 2010, 33(2): 32–40. doi: 10.1.1.165.4216

    17. [17]

      南文倩, 郭斌, 陈荟慧, 等. 基于跨空间多元交互的群智感知动态激励模型[J]. 计算机学报, 2015, 38(12): 2412–2425. doi: 10.11897/SP.J.1016.2017.01872
      NAN Wenqian, GUO Bin, CHEN Huihui, et al. Multitask-oriented participant selection in mobile crowd sensing[J]. Chinese Journal of Computer, 2015, 38(12): 2412–2425. doi: 10.11897/SP.J.1016.2017.01872

  • 加载中
    1. [1]

      Jinfu XUJin WUJunwei LITongzhou QUYongxing DONG . Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism. Journal of Electronics and Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775

    2. [2]

      Xiaoni DULi LIFujun ZHANG . Linear Complexity of Binary Sequences Derived from Euler Quotients Modulo 2pm. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190071

    3. [3]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    4. [4]

      Yuze SUXiangru MENGQiaoyan KANGXiaoyang HAN . Core Link Aware Survivable Virtual Network Link Protection Method. Journal of Electronics and Information Technology, 2019, 41(7): 1587-1593. doi: 10.11999/JEIT180737

    5. [5]

      Ying JIANGBingqie WANGJun HANYi HE . Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing. Journal of Electronics and Information Technology, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723

    6. [6]

      Yan WANGGaina XUEShunbo LIFeifei HUI . The Linear Complexity of a New Class of Generalized Cyclotomic Sequence of Order q with Period 2pm. Journal of Electronics and Information Technology, 2019, 41(0): 1-5. doi: 10.11999/JEIT180884

    7. [7]

      Zijian TIANFangyuan HE . A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180857

Metrics
  • PDF Downloads(18)
  • Abstract views(390)
  • HTML views(170)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return