Advanced Search

Citation: Renbiao WU, Ting ZHAO, Jingyi QU. Flight Delay Prediction Model Based on Deep SE-DenseNet[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1510-1517. doi: 10.11999/JEIT180644 shu

Flight Delay Prediction Model Based on Deep SE-DenseNet

  • Corresponding author: Jingyi QU, qujingyicauc@163.com
  • Received Date: 2018-07-02
    Accepted Date: 2018-11-16
    Available Online: 2019-06-01

Figures(5) / Tables(8)

  • Nowadays, the civil aviation industry has a high-precision prediction demand of flight delays, thus a flight delay prediction model based on the deep SE-DenseNet is proposed. Firstly, flight data, associated airport delay information and meteorological data are fused in the model. Then, the improved SE-DenseNet algorithm is used to extract feature automatically based on the fused flight data set. Finally, the softmax classifier is used to predict the delay level of flight. The proposed SE-DenseNet, combing the advantages of DenseNet and SENet, can not only enhance the transmission of deep information, avoid the problem of vanishing gradients, but also achieve feature recalibration by the feature extraction process. The results indicate that after data fusion, the accuracy of the model is improved 1.8% than only considering the characteristics of the flight itself. The improved algorithm can effectively improve the network performance. The final accuracy of the model reaches 93.19%.
  • 加载中
    1. [1]

      BASPINAR B, URE N K, KOYUNCU E, et al. Analysis of delay characteristics of European air traffic through a data-driven airport-centric queuing network model[J]. IFAC-PapersOnLine, 2016, 49(3): 359–364. doi: 10.1016/j.ifacol.2016.07.060

    2. [2]

      KHANMOHAMMAD S, TUTUN S, and KUCUK Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport[C]. Complex Adaptive Systems, Los Angeles, USA, 2016: 237–244.

    3. [3]

      程华, 李艳梅, 罗谦, 等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2014, 34(S1): 239–247. doi: 10.12011/1000-6788(2014)s1-239
      CHENG Hua, LI Yanmei, LUO Qian, et al. Study on flight delay with C4.5 decision tree based prediction method[J]. System Engineering – Theory &Practice, 2014, 34(S1): 239–247. doi: 10.12011/1000-6788(2014)s1-239

    4. [4]

      徐涛, 丁建立, 顾彬, 等. 基于增量式排列支持向量机的机场航班延误预警[J]. 航空学报, 2009, 30(7): 1256–1263. doi: 10.3321/j.issn:1000-6893.2009.07.014
      XU Tao, DING Jianli, GU Bin, et al. Forecast warning level of flight delays based on incremental ranking support vector machine[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1256–1263. doi: 10.3321/j.issn:1000-6893.2009.07.014

    5. [5]

      MANNA S, BISWAS S, KUNDU R, et al. A statistical approach to predict flight delay using gradient boosted decision tree[C]. 2017 International Conference on Computational Intelligence in Data Science, Chennai, India, 2017: 1–5.

    6. [6]

      KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]. 35th Digital Avionics Systems Conference, Sacramento, USA, 2016: 1–6.

    7. [7]

      LECUN Y, BENGIO Y, and HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539

    8. [8]

      HUANG Gao, LIU Zhuang, and WEINBERGER K Q. Densely connected convolutional networks[C]. 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, 2017: 2261–2269.

    9. [9]

      HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[OL]. https://arxiv.org/pdf/1709.01507.pdf, 2018.4.

    10. [10]

      IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning, Lile, France, 2015: 448–456.

    11. [11]

      NAIR V and HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807–814.

    12. [12]

      RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533–536. doi: 10.1038/323533a0

    13. [13]

      DUAN Kaibo, KEERTHI S S, CHU Wei, et al. Multi-category classification by soft-max combination of binary classifiers[C]. 4th International Workshop on Multiple Classifier Systems, Guildford, United Kingdom, 2003: 125–134.

    14. [14]

      SHEN Li, LIN Zhouchen, and HUANG Qingming. Relay backpropagation for effective learning of deep convolutional neural networks[C]. European Conference on Computer Vision, Amsterdam, The Netherlands, 2016, 467–482. doi: https://doi.org/10.1007/978-3-319-46478-7_29.

    15. [15]

      HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. 15th IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034.

    16. [16]

      吴仁彪, 李佳怡, 屈景怡. 基于双通道卷积神经网络的航班延误预测模型[J]. 计算机应用, 2018, 38(7): 2100–2106. doi: 10.11772/j.issn.1001-9081.2018010037
      WU Renbiao, LI Jiayi, and QU Jingyi. Flight delay prediction based on dual-channel convolutional neural networks[J]. Journal of Computer Applications, 2018, 38(7): 2100–2106. doi: 10.11772/j.issn.1001-9081.2018010037

  • 加载中
    1. [1]

      Jiangtao LUOChen HEJunxia WANG . Traceable Lightweight and Fine-grained Access Control in Named Data Networking. Journal of Electronics and Information Technology, 2019, 0(0): 1-7. doi: 10.11999/JEIT181160

    2. [2]

      Zijian TIANFangyuan HE . A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180857

    3. [3]

      Xiaofeng WANGMingyue SUNWeimin GE . An Incremental Feature Extraction Method without Estimating Image Covariance Matrix. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT181138

    4. [4]

      Yun GELin MAShunliang JIANGFamao YE . The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval. Journal of Electronics and Information Technology, 2019, 0(0): 1-8. doi: 10.11999/JEIT190017

    5. [5]

      Yiwei PANHua PENGTianyun LIWenya WANG . A Novel Radiometric Signature of Time-Division Multiple Access Signals and Its Application to Specific Emitter Identification. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

    6. [6]

      Shibao LIShengzhi WANGJianhang LIUTingpei HUANGXin ZHANG . Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180599

  • PDF Downloads(34)
  • Abstract views(428)
  • HTML views(219)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint