-
Advanced Search

Citation: Shiqi LÜ, Jun GAO, Xiangyu CAO, Junxiang LAN, Sijia LI, Guowen ZHANG. A Design of Ultra-broad-band Miniaturized Matematerial Absorber Based on Loading Lumped Resistances[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1330-1335. doi: 10.11999/JEIT180648 shu

A Design of Ultra-broad-band Miniaturized Matematerial Absorber Based on Loading Lumped Resistances

  • Corresponding author: Jun GAO, gjgj9694@163.com
  • Received Date: 2018-07-03
    Accepted Date: 2019-01-14
    Available Online: 2019-06-01

Figures(10) / Tables(1)

  • A metameterial absorber is designed, fabricated and experimentally demonstrated to realized ultra-wideband absorption based on loading lumped resistances to raise the efficiency of absorber. The proposed structure comprises of an upper absorber and an under absorber by longitudinal cascade to expand bandwidth. The analysis of equivalent circuit show that the absorber has good impedance matching in a wide frequency band and the mechanism of wave absorption is verified by current analysis. The size of the unit is only about 0.089$\lambda_ {\rm{L}}$×0.089$\lambda_ {\rm{L}}$, where $\lambda_ {\rm{L}}$ is the wavelength of the lowest frequency, and the total thickness of the absorber is only 0.078$\lambda_ {\rm{L}}$. Simulated and experimental results show that the absorber exhibits absorptivity above 90% from 2.24 GHz to 16.14 GHz, and the relative absorption bandwidth is about 151%. Measurement results show good agreement with the numerically simulated results.
  • 加载中
    1. [1]

      LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402

    2. [2]

      FU Qiang, FAN Chengli, LI Sijia, et al. Ultra-broad band radar cross section reduction of waveguide slot antenna with metamaterials[J]. Radioengineering, 2016, 25(2): 241–246. doi: 10.13164/re.2016.0241

    3. [3]

      LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352

    4. [4]

      LI Sijia, CAO Xiangyu, LIU Tao, et al. Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna[J]. Radioengineering, 2014, 23(1): 222–228.

    5. [5]

      MISHRA N and CHAUDHARY R K. A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications[J]. Microwave and Optical Technology Letter, 2016, 58(1): 71–75. doi: 10.1002/mop.29494

    6. [6]

      BHATTACHARYYA S, GHOSH S, CHAURASIYA D, et al. Wide-angle broadband microwave metamaterial absorber with octave bandwidth[J]. IET Microwaves, Antennas & Propagation, 2015, 9(11): 1160–1166. doi: 10.1049/iet-map.2014.0632

    7. [7]

      GHOSH S, BHATTACHARYYA S, CHAURASIYA D, et al. An ultrawideband ultrathin metamaterial absorber based on circular split rings[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1172–1175. doi: 10.1109/LAWP.2015.2396302

    8. [8]

      BHATTACHARYYA S and SRIVASTAVA K V. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator[J]. Journal of Applied Physics, 2014, 115(6): 064508. doi: 10.1063/1.4865273

    9. [9]

      LEE J and LIM S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance[J]. Electronics Letters, 2011, 47(1): 8–9. doi: 10.1049/el.2010.2770

    10. [10]

      WAKATSUCHI H, PAUL J, and CHRISTOPOULOS C. Performance of customizable cut-wire-based metamaterial absorbers: Absorbing mechanism and experimental demonstration[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5743–5752. doi: 10.1109/TAP.2012.2210180

    11. [11]

      TUONG P V, PARK J W, RHEE J Y, et al. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials[J]. Applied Physics Letters, 2013, 102(8): 081122. doi: 10.1063/1.4794173

    12. [12]

      CHENG Yongzhi, NIE Yan, and GONG Rongzhou. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films[J]. Optics & Laser Technology, 2013, 48: 415–421.

    13. [13]

      LI Sijia, GAO Jun, CAO Xiangyu, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. Journal of Applied Physics, 2014, 116(4): 043710. doi: 10.1063/1.4891716

    14. [14]

      PAN Wu, YU Xuan, ZHANG Jun, et al. A novel design of broadband terahertz metamaterial absorber based on nested circle rings[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2335–2338. doi: 10.1109/LPT.2016.2593699

    15. [15]

      JAMES J R, KINANY S J A, PEEL P D, et al. Leaky-wave multiple dichroic beamformers[J]. Electronics Letters, 1989, 25(18): 1209–1211. doi: 10.1049/el:19890811

    16. [16]

      ZUO Weiqing, YANG Yang, HE Xiaoxiang, et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 329–332. doi: 10.1109/LAWP.2016.2574885

    17. [17]

      LI Long and LÜ Zhiyong. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes[J]. Journal of Applied Physics, 2017, 122(5): 055104. doi: 10.1063/1.4997468

    18. [18]

      ZUO Weiqing, YANG Yang, HE Xiaoxiang, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 928–931. doi: 10.1109/LAWP.2016.2614703

    19. [19]

      LEE J, YOO M, and LIM S. A study of ultra-thin single layer frequency selective surface microwave absorbers with three different bandwidths using double resonance[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 221–230. doi: 10.1109/TAP.2014.2365826

  • 加载中
    1. [1]

      Jie LIYuepeng YANXiaoxin LIANGJing WANKuisong WANG . Research on the Novel Ultra-wideband Power Divider Based on Beetle Antennae Search Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181003

    2. [2]

      Ying YUQinglong WUKaixuan SHAOYuxing KANGJian YANG . Saliency Detection Using Wavelet Transform in Hypercomplex Domain. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180738

    3. [3]

      Hongtao YUYuehang DINGShuxin LIURuiyang HUANGYunjie GU . Eliminating Structural Redundancy Based on Super-node Theory. Journal of Electronics and Information Technology, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793

    4. [4]

      Wenzhe YANGHonglei YANGXueyun WANGShengkang ZHANGHuan ZHAOJun YANGKeming FENG . High Precision Time and Frequency Integration Transfer via Optical Fiber. Journal of Electronics and Information Technology, 2019, 41(7): 1579-1586. doi: 10.11999/JEIT180807

    5. [5]

      Wenshan CONGLan YUJianghai WO . A Grating Lobe Suppression Method of Wideband Real Time Delay Pattern Based on Particle Swarm Optimization Algorithm. Journal of Electronics and Information Technology, 2019, 41(7): 1698-1704. doi: 10.11999/JEIT180719

    6. [6]

      Ying JIANGBingqie WANGJun HANYi HE . Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing. Journal of Electronics and Information Technology, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723

    7. [7]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    8. [8]

      Ying CHENXiaoyue XU . Matrix Metric Learning for Person Re-identification Based on Bidirectional Reference Set. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190159

    9. [9]

      Ming YINWenjie WANGXuanyu ZHANGJijiao JIANG . A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table. Journal of Electronics and Information Technology, 2019, 41(8): 2008-2016. doi: 10.11999/JEIT180692

    10. [10]

      Zewen GUANJianwen CHENZheng BAO . A Modified Adaptive Sea Clutter Suppression Algorithm Based on PSNR-HOSVD for Skywave OTHR. Journal of Electronics and Information Technology, 2019, 41(7): 1743-1750. doi: 10.11999/JEIT180707

Metrics
  • PDF Downloads(12)
  • Abstract views(320)
  • HTML views(133)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return