-
Advanced Search

Citation: Shiqi LÜ, Jun GAO, Xiangyu CAO, Junxiang LAN, Sijia LI, Guowen ZHANG. A Design of Ultra-broad-band Miniaturized Matematerial Absorber Based on Loading Lumped Resistances[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1330-1335. doi: 10.11999/JEIT180648 shu

A Design of Ultra-broad-band Miniaturized Matematerial Absorber Based on Loading Lumped Resistances

  • Corresponding author: Jun GAO, gjgj9694@163.com
  • Received Date: 2018-07-03
    Accepted Date: 2019-01-14
    Available Online: 2019-06-01

Figures(10) / Tables(1)

  • A metameterial absorber is designed, fabricated and experimentally demonstrated to realized ultra-wideband absorption based on loading lumped resistances to raise the efficiency of absorber. The proposed structure comprises of an upper absorber and an under absorber by longitudinal cascade to expand bandwidth. The analysis of equivalent circuit show that the absorber has good impedance matching in a wide frequency band and the mechanism of wave absorption is verified by current analysis. The size of the unit is only about 0.089$\lambda_ {\rm{L}}$×0.089$\lambda_ {\rm{L}}$, where $\lambda_ {\rm{L}}$ is the wavelength of the lowest frequency, and the total thickness of the absorber is only 0.078$\lambda_ {\rm{L}}$. Simulated and experimental results show that the absorber exhibits absorptivity above 90% from 2.24 GHz to 16.14 GHz, and the relative absorption bandwidth is about 151%. Measurement results show good agreement with the numerically simulated results.
  • 加载中
    1. [1]

      LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402

    2. [2]

      FU Qiang, FAN Chengli, LI Sijia, et al. Ultra-broad band radar cross section reduction of waveguide slot antenna with metamaterials[J]. Radioengineering, 2016, 25(2): 241–246. doi: 10.13164/re.2016.0241

    3. [3]

      LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352

    4. [4]

      LI Sijia, CAO Xiangyu, LIU Tao, et al. Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna[J]. Radioengineering, 2014, 23(1): 222–228.

    5. [5]

      MISHRA N and CHAUDHARY R K. A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications[J]. Microwave and Optical Technology Letter, 2016, 58(1): 71–75. doi: 10.1002/mop.29494

    6. [6]

      BHATTACHARYYA S, GHOSH S, CHAURASIYA D, et al. Wide-angle broadband microwave metamaterial absorber with octave bandwidth[J]. IET Microwaves, Antennas & Propagation, 2015, 9(11): 1160–1166. doi: 10.1049/iet-map.2014.0632

    7. [7]

      GHOSH S, BHATTACHARYYA S, CHAURASIYA D, et al. An ultrawideband ultrathin metamaterial absorber based on circular split rings[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1172–1175. doi: 10.1109/LAWP.2015.2396302

    8. [8]

      BHATTACHARYYA S and SRIVASTAVA K V. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator[J]. Journal of Applied Physics, 2014, 115(6): 064508. doi: 10.1063/1.4865273

    9. [9]

      LEE J and LIM S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance[J]. Electronics Letters, 2011, 47(1): 8–9. doi: 10.1049/el.2010.2770

    10. [10]

      WAKATSUCHI H, PAUL J, and CHRISTOPOULOS C. Performance of customizable cut-wire-based metamaterial absorbers: Absorbing mechanism and experimental demonstration[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5743–5752. doi: 10.1109/TAP.2012.2210180

    11. [11]

      TUONG P V, PARK J W, RHEE J Y, et al. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials[J]. Applied Physics Letters, 2013, 102(8): 081122. doi: 10.1063/1.4794173

    12. [12]

      CHENG Yongzhi, NIE Yan, and GONG Rongzhou. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films[J]. Optics & Laser Technology, 2013, 48: 415–421.

    13. [13]

      LI Sijia, GAO Jun, CAO Xiangyu, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. Journal of Applied Physics, 2014, 116(4): 043710. doi: 10.1063/1.4891716

    14. [14]

      PAN Wu, YU Xuan, ZHANG Jun, et al. A novel design of broadband terahertz metamaterial absorber based on nested circle rings[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2335–2338. doi: 10.1109/LPT.2016.2593699

    15. [15]

      JAMES J R, KINANY S J A, PEEL P D, et al. Leaky-wave multiple dichroic beamformers[J]. Electronics Letters, 1989, 25(18): 1209–1211. doi: 10.1049/el:19890811

    16. [16]

      ZUO Weiqing, YANG Yang, HE Xiaoxiang, et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 329–332. doi: 10.1109/LAWP.2016.2574885

    17. [17]

      LI Long and LÜ Zhiyong. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes[J]. Journal of Applied Physics, 2017, 122(5): 055104. doi: 10.1063/1.4997468

    18. [18]

      ZUO Weiqing, YANG Yang, HE Xiaoxiang, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 928–931. doi: 10.1109/LAWP.2016.2614703

    19. [19]

      LEE J, YOO M, and LIM S. A study of ultra-thin single layer frequency selective surface microwave absorbers with three different bandwidths using double resonance[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 221–230. doi: 10.1109/TAP.2014.2365826

  • 加载中
    1. [1]

      Liaori JIDIXiangyu CAOJun GAO . Metasurface Antenna Design with Ultra-wideband RCS Reduction. Journal of Electronics and Information Technology, 2019, 41(1): 115-122. doi: 10.11999/JEIT180254

    2. [2]

      Tao LIUXiangyu CAOJun GAOJunxiang LANLili CONG . Design of Wideband Matasurface Antenna Array with Low Scattering Characteristics. Journal of Electronics and Information Technology, 2019, 41(9): 2095-2102. doi: 10.11999/JEIT180922

    3. [3]

      Jie LIYuepeng YANXiaoxin LIANGJing WANKuisong WANG . Research on the Novel Ultra-wideband Power Divider Based on Beetle Antennae Search Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181003

    4. [4]

      Xiaoxiang CEHNMengdao XINGGuangcai SUNGuobin JING . A Motion Error Estimation Method Joint Envelope and Phase for 10 GHz Ultra-wideband Microwave Photonic-based SAR Image. Journal of Electronics and Information Technology, 2019, 41(5): 1069-1076. doi: 10.11999/JEIT180563

    5. [5]

      Ying YUQinglong WUKaixuan SHAOYuxing KANGJian YANG . Saliency Detection Using Wavelet Transform in Hypercomplex Domain. Journal of Electronics and Information Technology, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738

    6. [6]

      Miao LIAOYang LIYuqian ZHAOYizhi LIU . A New Method for Image Superpixel Segmentation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190111

    7. [7]

      Jin WANGBiao DULijie SUNLei XIE . Design of Wideband High Performance Quad-ridge Waveguide Polarizer. Journal of Electronics and Information Technology, 2019, 41(3): 611-618. doi: 10.11999/JEIT180423

    8. [8]

      Fupeng LIJingbiao LIUGuangyi WANGKangtai WANG . An Image Encryption Algorithm Based on Chaos Set. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190344

    9. [9]

      Li LIPeng YEZhangjie PENGYanzhi TANG . Research on Joint Interference Coordination Approach in Ultra-dense Heterogeneous Network. Journal of Electronics and Information Technology, 2019, 41(1): 9-15. doi: 10.11999/JEIT180290

    10. [10]

      Xiaoping ZENGFeng YUXin JIANShiqi LIDerong DUXin JIANGWei FANG . Performance Analysis of Ultra-dense Networks Based on Coordinated Multiple-points Joint Transmission. Journal of Electronics and Information Technology, 2019, 41(3): 563-570. doi: 10.11999/JEIT180398

    11. [11]

      Haibo ZHANGHu LIShanxue CHENXiaofan HE . Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation. Journal of Electronics and Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592

    12. [12]

      Hongtao YUYuehang DINGShuxin LIURuiyang HUANGYunjie GU . Eliminating Structural Redundancy Based on Super-node Theory. Journal of Electronics and Information Technology, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793

    13. [13]

      Xiaoqiang ZHAOZhaoyang SONG . Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections. Journal of Electronics and Information Technology, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036

    14. [14]

      Bo XIAOKai HUOYongxiang LIU . Development and Prospect of Radar and Communication Integration. Journal of Electronics and Information Technology, 2019, 41(3): 739-750. doi: 10.11999/JEIT180515

    15. [15]

      Wenzhe YANGHonglei YANGXueyun WANGShengkang ZHANGHuan ZHAOJun YANGKeming FENG . High Precision Time and Frequency Integration Transfer via Optical Fiber. Journal of Electronics and Information Technology, 2019, 41(7): 1579-1586. doi: 10.11999/JEIT180807

    16. [16]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    17. [17]

      Yuning QIANYawei CHENJun SUN . Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform. Journal of Electronics and Information Technology, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394

    18. [18]

      Hao WANGXiaonan XUQiming MA . A Robust Broadband Interference Suppression Algorithm Based on Few Snapshots. Journal of Electronics and Information Technology, 2019, 41(4): 851-857. doi: 10.11999/JEIT180505

    19. [19]

      Shiqi WANGShaojun FANGPeng CHEN . Design and Research of DC-6 GHz Broadband Electromagnetic Radiation Experimental Device. Journal of Electronics and Information Technology, 2019, 41(5): 1092-1097. doi: 10.11999/JEIT180593

    20. [20]

      Wenshan CONGLan YUJianghai WO . A Grating Lobe Suppression Method of Wideband Real Time Delay Pattern Based on Particle Swarm Optimization Algorithm. Journal of Electronics and Information Technology, 2019, 41(7): 1698-1704. doi: 10.11999/JEIT180719

Metrics
  • PDF Downloads(15)
  • Abstract views(429)
  • HTML views(167)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return