-
Advanced Search

Citation: Haoran LIU, Liyue ZHANG, Ruixing FAN, Haiyu WANG, Chunlan ZHANG. Bayesian Network Structure Learning Based on Improved Whale Optimization Strategy[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1434-1441. doi: 10.11999/JEIT180653 shu

Bayesian Network Structure Learning Based on Improved Whale Optimization Strategy

  • Corresponding author: Haoran LIU, liu.haoran@ysu.edu.cn
  • Received Date: 2018-07-03
    Accepted Date: 2019-01-15
    Available Online: 2019-06-01

Figures(3) / Tables(3)

  • A Bayesian network structure learning algorithm based on improved whale optimization strategy is proposed to solve the problem that the current Bayesian network structure learning algorithm is easily trapped in local optimal and is of low optimization efficiency. The improved algorithm proposes first a new method to establish a better initial population, and then it uses the cross mutation operator that does not produce the illegal structure to construct an improved predation behavior suitable for Bayesian network structure learning. At the same time, it adopts the dynamic parameter tuning strategy to enhance the individual search ability. The population is updated followed by the fitness order so that the optimal Bayesian network structure is obtained. Simulation results demonstrate that the algorithm has global convergence, high efficiency and higher accuracy than other similar optimization algorithms.
  • 加载中
    1. [1]

      CONTALDI C, VAFAEE F, and NELSON P C. Bayesian network hybrid learning using an elite-guided genetic algorithm[J]. Artificial Intelligence Review, 2018. doi: 10.1007/s10462-018-9615-5

    2. [2]

      刘广怡, 李鸥, 宋涛, 等. 基于贝叶斯网络的无线传感网高效数据传输方法[J]. 电子与信息学报, 2016, 38(6): 1362–1367. doi: 10.11999/JEIT151027
      LIU Guangyi, LI Ou, SONG Tao, et al. Energy-efficiency data transmission method in WSN based on Bayesian network[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1362–1367. doi: 10.11999/JEIT151027

    3. [3]

      邓歆, 孟洛明. 基于贝叶斯网络的通信网告警相关性和故障诊断模型[J]. 电子与信息学报, 2007, 29(5): 1182–1186.
      DENG Xin and MENG Luoming. Bayesian networks based alarm correlation and fault diagnosis in communication networks[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1182–1186.

    4. [4]

      CHICKERING D M. Learning Bayesian Networks is NP-complete[M]. FISHER D and LENZ H J. Learning from Data. New York: Springer, 1996: 121–130.

    5. [5]

      SCANAGATTA M, CORANI G, DE CAMPOS C P, et al. Approximate structure learning for large Bayesian networks[J]. Machine Learning, 2018, 107(8/10): 1209–1227. doi: 10.1007/s10994-018-5701-9

    6. [6]

      DENNIS D M K, WILLIAMS M R, and SIGMAN M E. Investigative probabilistic inferences of smokeless powder manufacturers utilizing a Bayesian network[J]. Forensic Chemistry, 2017, 3: 41–51. doi: 10.1016/j.forc.2016.12.001

    7. [7]

      LIU Hui, ZHOU Shuigeng, LAM W, et al. A new hybrid method for learning Bayesian networks: separation and reunion[J]. Knowledge-Based Systems, 2017, 121: 185–197. doi: 10.1016/j.knosys.2017.01.029

    8. [8]

      TSAMARDINOS I, BROWN L E, and ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31–78. doi: 10.1007/s10994-006-6889-7

    9. [9]

      刘浩然, 孙美婷, 李雷, 等. 基于蚁群节点寻优的贝叶斯网络结构算法研究[J]. 仪器仪表学报, 2017, 38(1): 143–150. doi: 10.19650/j.cnki.cjsi.2017.01.019
      LIU Haoran, SUN Meiting, LI Lei, et al. Study on Bayesian network structure learning algorithm based on ant colony node order optimization[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 143–150. doi: 10.19650/j.cnki.cjsi.2017.01.019

    10. [10]

      刘彬, 王海羽, 孙美婷, 等. 一种通过节点序寻优进行贝叶斯网络结构学习的算法[J]. 电子与信息学报, 2018, 40(5): 1234–1241. doi: 10.11999/JEIT170675
      LIU Bin, WANG Haiyu, SUN Meiting, et al. Learning Bayesian network structure from node ordering searching optimal[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1234–1241. doi: 10.11999/JEIT170675

    11. [11]

      MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008

    12. [12]

      MENG Qingfei, CHEN Yuehui, WANG Dong, et al. Learning bayesian networks structure based part mutual information for reconstructing gene regulatory networks[C]. Proceedings of the 13th International Conference on Intelligent Computing, Liverpool, UK, 2017: 647–654. doi: 10.1007/978-3-319-63312-1_57.

    13. [13]

      DE CAMPOS C P, SCANAGATTA M, CORANI G, et al. Entropy-based pruning for learning bayesian networks using BIC[J]. Artificial Intelligence, 2018, 260: 42–50. doi: 10.1016/j.artint.2018.04.002

    14. [14]

      ZAKHAROV V K and RODIONOV T V. Naturalness of the class of Lebesgue-Borel-Hausdorff measurable functions[J]. Mathematical Notes, 2014, 95(3/4): 500–508. doi: 10.1134/S0001434614030225

    15. [15]

      FANG Wei, SUN Jun, CHEN Huanhuan, et al. A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population[J]. Information Sciences, 2016, 330: 19–48. doi: 10.1016/j.ins.2015.09.055

    16. [16]

      陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
      CHEN Zhimin, TIAN Mengchu, WU Panlong, et al. Intelligent particle filter based on bat algorithm[J]. Acta Physica Sinica, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502

    17. [17]

      ADABOR E S, ACQUAAH-MENSAH G K, and ODURO F T. SAGA: A hybrid search algorithm for Bayesian network structure learning of transcriptional regulatory networks[J]. Journal of Biomedical Informatics, 2015, 53: 27–35. doi: 10.1016/j.jbi.2014.08.010

  • 加载中
    1. [1]

      Ying CHENDandan HE . Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion. Journal of Electronics and Information Technology, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429

    2. [2]

      Ling ZHUANGJuan GUANJingyi MAGuangyu WANG . An Improvement Project of Roundoff Noise Performance of FIR Filters Based on Structure Optimization. Journal of Electronics and Information Technology, 2019, 41(4): 932-938. doi: 10.11999/JEIT180480

    3. [3]

      Ying ZHANGYufeng YAO . Channel Estimation Algorithm of Maritime Sparse Channel Based on Fast Bayesian Matching Pursuit Optimization. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190102

    4. [4]

      Xiaolong LIU . Application of Improved Multiverse Algorithm to Large Scale Optimization Problems. Journal of Electronics and Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751

    5. [5]

      Lijiang GAOHaigang YANGWei LIYanan HAOChanglong LIUCaixia SHI . A Circuit Optimization Method of Improved Lookup Table for Highly Efficient Resource Utilization. Journal of Electronics and Information Technology, 2019, 41(10): 2382-2388. doi: 10.11999/JEIT190095

    6. [6]

      Zhiheng ZHOUKaiyi LIUJunchu HUANGZengqun CHEN . Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance. Journal of Electronics and Information Technology, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336

    7. [7]

      Yunjie GUYuxiang HUJichao XIE . A Spatial and Temporal Optimal Method of Service Function Chain Orchestration Based on Overlay Network Structure. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190145

    8. [8]

      Ying ZHANGLingjun GAO . Target Tracking with Underwater Sensor Networks Based on Grubbs Criterion and Improved Particle Filter Algorithm. Journal of Electronics and Information Technology, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079

    9. [9]

      Rui LIQun ZHANGLinghua SUJia LIANGYing LUO . Bistatic Radar Coincidence Imaging Based on Sparse Bayesian Learning. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180933

    10. [10]

      Xi CHENKun ZHANG . A Classifier Learning Method Based on Tree-Augmented Naïve Bayes. Journal of Electronics and Information Technology, 2019, 41(8): 2001-2008. doi: 10.11999/JEIT180886

    11. [11]

      Ying GUORunze DONGKunfeng ZHANGPing SUIYinsong YANG . Direction of Arrival Estimation for Multiple Frequency Hopping Signals Based on Sparse Bayesian Learning. Journal of Electronics and Information Technology, 2019, 41(3): 516-522. doi: 10.11999/JEIT180435

    12. [12]

      Weijia CUIPeng ZHANGBin BA . Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination. Journal of Electronics and Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181

    13. [13]

      Hongyan LUOZiyan ZHURui LINZhen LINYanjian LIAO . Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information. Journal of Electronics and Information Technology, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195

    14. [14]

      Li ZHOUXinming ZHANGWeizhen GUOYan WANG . A Direct Fusion Algorithm for Multiple Pieces of Evidence Based on Improved Conflict Measure. Journal of Electronics and Information Technology, 2019, 41(5): 1145-1151. doi: 10.11999/JEIT180578

    15. [15]

      Guangwu CHENXiaobo LIUDi WANGShede LIU . Denoising of MEMS Gyroscope Based on Improved Wavelet Transform. Journal of Electronics and Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590

    16. [16]

      Shan GAIZhongyun BAO . Banknote Recognition Research Based on Improved Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097

    17. [17]

      Guangwu CHENJianhao CHENGJuhua YANGHao LIULinjing ZHANG . Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter. Journal of Electronics and Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171

    18. [18]

      Jun LUOYongsong YANGBaoyu SHI . Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm. Journal of Electronics and Information Technology, 2019, 41(8): 2017-2024. doi: 10.11999/JEIT180949

    19. [19]

      Xudong WANGQian ZHONGHe YANDi ZHANG . An Improved MUSIC Algorithm for Two Dimensional Direction Of Arrival Estimation. Journal of Electronics and Information Technology, 2019, 41(9): 2137-2142. doi: 10.11999/JEIT181090

    20. [20]

      Lun TANGYu ZHOUYouchao YANGGuofan ZHAOQianbin CHEN . Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing. Journal of Electronics and Information Technology, 2019, 41(9): 2071-2078. doi: 10.11999/JEIT180894

Metrics
  • PDF Downloads(27)
  • Abstract views(393)
  • HTML views(221)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return