-
Advanced Search

Citation: Yan ZUO, Zhimeng CHEN, Liping CAI. Single-observer DOA/TDOA Registration and Passive Localization Based on Constrained Total Least Squares[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1317-1323. doi: 10.11999/JEIT180655 shu

Single-observer DOA/TDOA Registration and Passive Localization Based on Constrained Total Least Squares

  • Corresponding author: Zhimeng CHEN, zhimchen@qq.com
  • Received Date: 2018-07-04
    Accepted Date: 2018-12-25
    Available Online: 2019-06-01

Figures(6)

  • The system biases degrade seriously the location precision for the multi-static passive radar system. A joint registration and passive localization algorithm based on Constrained Total Least Squares (CTLS) using Direction Of Arrival (DOA) and Time Difference Of Arrival (TDOA) measurements is developed to address the multi-static radar localization problem under the influence of system biases. Firstly, the nonlinear DOA and TDOA measurement equations are linearized by introducing auxiliary variables. Considering the statistical correlation properties of the noise matrix in the pseudo-linear equations, a joint biases registration and passive localization problem is formulated as a CTLS problem and the Newton’s method is applied to solving the CTLS problem. Moreover, a dependent least squares algorithm is designed to improve the target position estimation using the relationship between auxiliary variables and target position. An iterative post-estimate procedure is exploited to enhance further the estimation accuracy of the system biases. Finally, the theoretical error of the proposed algorithm is derived. Simulations demonstrate that the proposed algorithm can effectively estimate the system biases and target position.
  • 加载中
    1. [1]

      LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006

    2. [2]

      INGGS M, TONG C, NADJIASNGAR R, et al. Planning and design phases of a commensal radar system in the FM broadcast band[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 50–63. doi: 10.1109/MAES.2014.130165

    3. [3]

      GASSIER G, CHABRIEL G, BARRÈRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511

    4. [4]

      CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network: initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2460–2469. doi: 10.1109/TAES.2015.130270

    5. [5]

      NOROOZI A and SEBT M A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671. doi: 10.1109/TAES.2017.2669558

    6. [6]

      赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336–2343. doi: 10.11999/JEIT151379
      ZHAO Yongjun, ZHAO Yongsheng, and ZHAO Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2336–2343. doi: 10.11999/JEIT151379

    7. [7]

      王鼎, 魏帅. 基于外辐射源的约束总体最小二乘定位算法及其理论性能分析[J]. 中国科学: 信息科学, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397
      WANG Ding and WEI Shuai. The constrained-total-least-squares localization algorithm and performance analysis based on an external illuminator[J]. Scientia Sinica Informationis, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397

    8. [8]

      YI Jianxin, WAN Xianrong, LEUNG H, et al. Noncooperative registration for multistatic passive radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 563–575. doi: 10.1109/TAES.2015.140786

    9. [9]

      JEAN O and WEISS A J. Passive localization and synchronization using arbitrary signals[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2143–2150. doi: 10.1109/TSP.2014.2307281

    10. [10]

      田强, 冯大政, 杨凡, 等. 基于线性校正的TOA联合同步与定位算法[J]. 系统工程与电子技术, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01
      TIAN Qiang, FENG Dazheng, YANG Fan, et al. Joint TOA-based synchronization and localization via linear-correction technique[J]. Systems Engineering and Electronics, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01

    11. [11]

      WAN Xianrong, YI Jianxin, ZHAO Zhixin, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. doi: 10.1109/TAES.2013.120737

    12. [12]

      ZHOU Yifeng, LEUNG H, and YIP P C. An exact maximum likelihood registration algorithm for data fusion[J]. IEEE Transactions on Signal Processing, 1997, 45(6): 1560–1573. doi: 10.1109/78.599998

    13. [13]

      FORTUNATI S, GINI F, FARINA A, et al. On the application of the expectation-maximisation algorithm to the relative sensor registration problem[J]. IET Radar, Sonar & Navigation, 2013, 7(2): 191–203. doi: 10.1049/iet-rsn.2012.0050

    14. [14]

      FORTUNATI S, FARINA A, GINI F, et al. Least squares estimation and Cramér-Rao type lower bounds for relative sensor registration process[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1075–1087. doi: 10.1109/TSP.2010.2097258

    15. [15]

      WANG Yue and HO K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4532–4544. doi: 10.1109/TSP.2013.2271750

    16. [16]

      孙顺, 董凯, 齐林, 等. 基于TDOA与GROA的多运动站误差配准算法[J]. 电子与信息学报, 2017, 39(6): 1439–1445. doi: 10.11999/JEIT160562
      SUN Shun, DONG Kai, QI Lin, et al. Multiple moving observers registration algorithm based on TDOA and GROA[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1439–1445. doi: 10.11999/JEIT160562

  • 加载中
    1. [1]

      Lu LUMeiguo GAO . A Satellite Calibration Method for the Baseline Coordinate and Phase Difference of Distributed Radar Array. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181152

    2. [2]

      Jie PANShuai WANGDaojing LIXiaochun LU . A Channel Phase Error Compensation Method for Space Borne Array SAR Based on Antenna Pattern and Doppler Correlation Coefficient. Journal of Electronics and Information Technology, 2019, 41(7): 1758-1765. doi: 10.11999/JEIT181061

    3. [3]

      Yiwei PANHua PENGTianyun LIWenya WANG . A Novel Radiometric Signature of Time-Division Multiple Access Signals and Its Application to Specific Emitter Identification. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

    4. [4]

      Lun TANGRunlin MAHeng YANGQianbin CHEN . Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180770

    5. [5]

      Huan ZHANGHong LEI . An Error Bound of Signal Recovery for Penalized Programs in Linear Inverse Problems. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT181125

    6. [6]

      Mu ZHOUYanmeng WANGHui YUANZengshan TIAN . Mann-Whitney Rank Sum Test Based Wireless Local Area Network Indoor Mapping and Localization Approach. Journal of Electronics and Information Technology, 2019, 41(7): 1555-1564. doi: 10.11999/JEIT180392

    7. [7]

      Ying LIUZhihong QIANDi JIA . Universal Localization Algorithm Based on Beetle Antennae Search in Indoor Environment. Journal of Electronics and Information Technology, 2019, 41(7): 1565-1571. doi: 10.11999/JEIT181021

    8. [8]

      Shibao LIShengzhi WANGJianhang LIUTingpei HUANGXin ZHANG . Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180599

    9. [9]

      Xiaoheng ZHANGYongming LIPin WANGXiaoping ZENGFang YANYanling ZHANGOumei CHENG . Classification Algorithm of Parkinson’s Disease Based on Convolutional Sparse Transfer Learning and Sample/Feature Parallel Selection. Journal of Electronics and Information Technology, 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792

    10. [10]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    11. [11]

      Kaihui TUZhihong HUANGZhengrong HOUHaigang YANG . Research on Efficient FPGA Bitstream Generation System Based on Mode Matching and Hierarchical Mapping. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190143

    12. [12]

      Lei PUXinxi FENGZhiqiang HOUWangsheng YU . Robust Visual Tracking Based on Spatial Reliability Constraint. Journal of Electronics and Information Technology, 2019, 41(7): 1650-1657. doi: 10.11999/JEIT180780

    13. [13]

      Ningning QINLei JINJian XUFan XULe YANG . Neighbor Information Constrained Node Scheduling in Stochastic Heterogeneous Wireless Sensor Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190094

    14. [14]

      Xiaoni DULi LIFujun ZHANG . Linear Complexity of Binary Sequences Derived from Euler Quotients Modulo 2pm. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190071

    15. [15]

      Yan WANGGaina XUEShunbo LIFeifei HUI . The Linear Complexity of a New Class of Generalized Cyclotomic Sequence of Order q with Period 2pm. Journal of Electronics and Information Technology, 2019, 41(0): 1-5. doi: 10.11999/JEIT180884

    16. [16]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    17. [17]

      Shanchao YANGKangsheng TIANChangfei WU . Target Assignment Method for Phased Array Radar Network Based on Quality of Service. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181133

    18. [18]

      Baoqing XUYongbo ZHAOXiaojiao PANG . Joint Real-valued Beamspace-based Method for Angle Estimation in Bistatic MIMO Radar. Journal of Electronics and Information Technology, 2019, 41(7): 1721-1727. doi: 10.11999/JEIT180766

    19. [19]

      Yongwei LIWenchong XIE . A Novel Clutter Spectrum Compensation Method for End-fire Array Airborne Radar Based on Space-time Interpolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181131

    20. [20]

      Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190098

Metrics
  • PDF Downloads(17)
  • Abstract views(283)
  • HTML views(141)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return