-
Advanced Search

Citation: Yan ZUO, Zhimeng CHEN, Liping CAI. Single-observer DOA/TDOA Registration and Passive Localization Based on Constrained Total Least Squares[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1317-1323. doi: 10.11999/JEIT180655 shu

Single-observer DOA/TDOA Registration and Passive Localization Based on Constrained Total Least Squares

  • Corresponding author: Zhimeng CHEN, zhimchen@qq.com
  • Received Date: 2018-07-04
    Accepted Date: 2018-12-25
    Available Online: 2019-06-01

Figures(6)

  • The system biases degrade seriously the location precision for the multi-static passive radar system. A joint registration and passive localization algorithm based on Constrained Total Least Squares (CTLS) using Direction Of Arrival (DOA) and Time Difference Of Arrival (TDOA) measurements is developed to address the multi-static radar localization problem under the influence of system biases. Firstly, the nonlinear DOA and TDOA measurement equations are linearized by introducing auxiliary variables. Considering the statistical correlation properties of the noise matrix in the pseudo-linear equations, a joint biases registration and passive localization problem is formulated as a CTLS problem and the Newton’s method is applied to solving the CTLS problem. Moreover, a dependent least squares algorithm is designed to improve the target position estimation using the relationship between auxiliary variables and target position. An iterative post-estimate procedure is exploited to enhance further the estimation accuracy of the system biases. Finally, the theoretical error of the proposed algorithm is derived. Simulations demonstrate that the proposed algorithm can effectively estimate the system biases and target position.
  • 加载中
    1. [1]

      LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006

    2. [2]

      INGGS M, TONG C, NADJIASNGAR R, et al. Planning and design phases of a commensal radar system in the FM broadcast band[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 50–63. doi: 10.1109/MAES.2014.130165

    3. [3]

      GASSIER G, CHABRIEL G, BARRÈRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511

    4. [4]

      CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network: initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2460–2469. doi: 10.1109/TAES.2015.130270

    5. [5]

      NOROOZI A and SEBT M A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671. doi: 10.1109/TAES.2017.2669558

    6. [6]

      赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336–2343. doi: 10.11999/JEIT151379
      ZHAO Yongjun, ZHAO Yongsheng, and ZHAO Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2336–2343. doi: 10.11999/JEIT151379

    7. [7]

      王鼎, 魏帅. 基于外辐射源的约束总体最小二乘定位算法及其理论性能分析[J]. 中国科学: 信息科学, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397
      WANG Ding and WEI Shuai. The constrained-total-least-squares localization algorithm and performance analysis based on an external illuminator[J]. Scientia Sinica Informationis, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397

    8. [8]

      YI Jianxin, WAN Xianrong, LEUNG H, et al. Noncooperative registration for multistatic passive radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 563–575. doi: 10.1109/TAES.2015.140786

    9. [9]

      JEAN O and WEISS A J. Passive localization and synchronization using arbitrary signals[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2143–2150. doi: 10.1109/TSP.2014.2307281

    10. [10]

      田强, 冯大政, 杨凡, 等. 基于线性校正的TOA联合同步与定位算法[J]. 系统工程与电子技术, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01
      TIAN Qiang, FENG Dazheng, YANG Fan, et al. Joint TOA-based synchronization and localization via linear-correction technique[J]. Systems Engineering and Electronics, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01

    11. [11]

      WAN Xianrong, YI Jianxin, ZHAO Zhixin, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. doi: 10.1109/TAES.2013.120737

    12. [12]

      ZHOU Yifeng, LEUNG H, and YIP P C. An exact maximum likelihood registration algorithm for data fusion[J]. IEEE Transactions on Signal Processing, 1997, 45(6): 1560–1573. doi: 10.1109/78.599998

    13. [13]

      FORTUNATI S, GINI F, FARINA A, et al. On the application of the expectation-maximisation algorithm to the relative sensor registration problem[J]. IET Radar, Sonar & Navigation, 2013, 7(2): 191–203. doi: 10.1049/iet-rsn.2012.0050

    14. [14]

      FORTUNATI S, FARINA A, GINI F, et al. Least squares estimation and Cramér-Rao type lower bounds for relative sensor registration process[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1075–1087. doi: 10.1109/TSP.2010.2097258

    15. [15]

      WANG Yue and HO K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4532–4544. doi: 10.1109/TSP.2013.2271750

    16. [16]

      孙顺, 董凯, 齐林, 等. 基于TDOA与GROA的多运动站误差配准算法[J]. 电子与信息学报, 2017, 39(6): 1439–1445. doi: 10.11999/JEIT160562
      SUN Shun, DONG Kai, QI Lin, et al. Multiple moving observers registration algorithm based on TDOA and GROA[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1439–1445. doi: 10.11999/JEIT160562

  • 加载中
    1. [1]

      Lu LUMeiguo GAO . A Satellite Calibration Method for the Baseline Coordinate and Phase Difference of Distributed Radar Array. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181152

    2. [2]

      Dongping YUYan GUONing LISixing YANGXiaoxiang SONG . Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization. Journal of Electronics and Information Technology, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531

    3. [3]

      Xiaode LÜHanliang ZHANGZhongsheng LIUZhenghao SUNPingyu LIU . Research on Co-channel Base Station Interference Suppression Method of Passive Radar Based on LTE Signal. Journal of Electronics and Information Technology, 2019, 41(9): 2123-2130. doi: 10.11999/JEIT180904

    4. [4]

      Kaiqiang RENZhengbo SUN . Wide Area Difference Calibration Algorithm Based on Virtual Reference Station for Tri-satellite TDOA Geolocation System. Journal of Electronics and Information Technology, 2019, 41(2): 433-439. doi: 10.11999/JEIT180289

    5. [5]

      Yingkun HUANGWeidong JINPeng GEBing LI . Radar Emitter Signal Identification Based on Multi-scale Information Entropy. Journal of Electronics and Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535

    6. [6]

      Dongping YUYan GUONing LIJie LIUSixing YANG . Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information. Journal of Electronics and Information Technology, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333

    7. [7]

      Yongsheng ZHAODexiu HUZhixin LIUYongjun ZHAOChuang ZHAO . Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar. Journal of Electronics and Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858

    8. [8]

      Jie PANShuai WANGDaojing LIXiaochun LU . A Channel Phase Error Compensation Method for Space Borne Array SAR Based on Antenna Pattern and Doppler Correlation Coefficient. Journal of Electronics and Information Technology, 2019, 41(7): 1758-1765. doi: 10.11999/JEIT181061

    9. [9]

      Tianqi ZHANGHuawei ZHANGDonghua LIUQun LI . Frequency Domain Blind Source Separation Permutation Algorithm Based on Regional Growth Correction. Journal of Electronics and Information Technology, 2019, 41(3): 580-587. doi: 10.11999/JEIT180386

    10. [10]

      Yiwei PANHua PENGTianyun LIWenya WANG . A Novel Radiometric Signature of Time-Division Multiple Access Signals and Its Application to Specific Emitter Identification. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

    11. [11]

      Wei WANGZiying HULinshu GONG . Adaptive Off-grid Calibration Method for MIMO Radar 3D Imaging. Journal of Electronics and Information Technology, 2019, 41(6): 1294-1301. doi: 10.11999/JEIT180145

    12. [12]

      Xiaodong QUYang SUNChong CHENJunlong SHIXin XUJutao LIWanhua ZHUGuangyou FANG . Direction Finding for Electromagnetic Radiation Source Using Ultra-short Baseline Array. Journal of Electronics and Information Technology, 2019, 41(4): 830-836. doi: 10.11999/JEIT180516

    13. [13]

      Yiwei PANSihan YANGHua PENGTianyun LIWenya WANG . Specific Emitter Identification Using Signal Trajectory Image. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190329

    14. [14]

      Chao WANGYanfei WANGQi WANGXueli ZHAN . Velocity Estimation of Moving Targets Based on Least Square Fitting of High-resolution SAR Echo Sequences. Journal of Electronics and Information Technology, 2019, 41(5): 1055-1062. doi: 10.11999/JEIT180695

    15. [15]

      Yatao WANGXiaodong ZENGLongjian ZHOU . Analysis for Effect of Radar Intermittent Radiation on the Performance of Cross Location. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190110

    16. [16]

      Yu ZHANGTianqi LIJin ZHANGBo TANG . An Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190085

    17. [17]

      Zhiyu LUJianhui WANGTianzhu QINBin BA . Direct Position Determination for Coherently Distributed Noncircular Source Based on Symmetric Shift Invariance. Journal of Electronics and Information Technology, 2019, 41(3): 537-543. doi: 10.11999/JEIT180433

    18. [18]

      Yingquan ZOUTailong WUYusong PENGYihang SUNYigang LIUCuifang ZHANG . Method for Compensating Distortion Created by Mismatch Errors in Time-interleaved ADCs Based on Offline Estimation and Online Correction. Journal of Electronics and Information Technology, 2019, 41(1): 226-232. doi: 10.11999/JEIT180098

    19. [19]

      Yabo LIULin LIUZhiyong TONGZhongjun YU . A Radiometric Calibration and Error Analysis Method for HWRS SAR at S-band. Journal of Electronics and Information Technology, 2019, 41(8): 1946-1951. doi: 10.11999/JEIT180983

    20. [20]

      Yu XIONGYaya YANGZhenzhen ZHANGJing JIANG . Resource Allocation Based on Bandwidth Prediction in Software-defined Time and Wavelength Division Multiplexed Passive Optical Network. Journal of Electronics and Information Technology, 2019, 41(8): 1885-1892. doi: 10.11999/JEIT180837

Metrics
  • PDF Downloads(19)
  • Abstract views(331)
  • HTML views(153)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return