-
Advanced Search

Citation: He YAN, Jue WANG, Jia HUANG, Xudong WANG. A Moving-targets Detection Algorithm for Spaceborne SAR System Based on Two-dimensional Velocity Search Method[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1287-1293. doi: 10.11999/JEIT180663 shu

A Moving-targets Detection Algorithm for Spaceborne SAR System Based on Two-dimensional Velocity Search Method

  • Corresponding author: He YAN, yanhe@nuaa.edu.cn
  • Received Date: 2018-07-05
    Accepted Date: 2019-01-20
    Available Online: 2019-06-01

Figures(9) / Tables(1)

  • The moving target component is often defocused in spaceborne SAR images. Therefore, the moving target detection performance is affected depending on the degree of defocusing. Combined with the RD algorithm, a moving-targets detection algorithm for spaceborne SAR based on a two-dimensional velocity search is proposed. Through velocity search on the distance direction and the azimuth direction, the Doppler parameters of possible moving targets can be matched. Then the strongest value among all the searching velocity results for each pixel is used for Constant False Alarm Rate(CFAR) detector. This core process can improve the detection performance of moving target component. Simulation results validate the effectiveness of the proposed method.
  • 加载中
    1. [1]

      李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116
      LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics &Information Technology, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116

    2. [2]

      韦北余, 朱岱寅, 吴迪. 一种基于动目标聚焦的SAR-GMTI方法[J]. 电子与信息学报, 2016, 38(7): 1738–1744. doi: 10.11999/JEIT151036
      WEI Beiyu, ZHU Daiyin, and WU Di. A SAR-GMTI approach based on moving target focusing[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1738–1744. doi: 10.11999/JEIT151036

    3. [3]

      ENTZMINGER J N, FOWLER C A, and KENNEALLY W J. JointSTARS and GMTI: Past, present and future[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 748–761. doi: 10.1109/7.766956

    4. [4]

      ZHENG Hongchao, WANG Junfeng, and LIU Xiaozhao. Motion parameter estimation for multichannel SAR-GMTI systems[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.

    5. [5]

      郑明洁. 合成孔径雷达动目标检测和成像研究[D]. [博士论文], 中国科学院电子学研究所, 2003: 6.

    6. [6]

      HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation via time-Doppler chirp-varying approach for single-channel airborne SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4367–4383. doi: 10.1109/TGRS.2017.2691742

    7. [7]

      WANG Yu, CAO Yunhe, PENG Zhigang, et al. Clutter suppression and moving target imaging approach for multichannel hypersonic vehicle borne radar[J]. Digital Signal Processing, 2017, 68: 81–92. doi: 10.1016/j.dsp.2017.05.010

    8. [8]

      YAN He, ZHU Daiyin, WANG R, et al. Practical signal processing algorithm for wide-area surveillance-GMTI mode[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 991–998. doi: 10.1049/iet-rsn.2014.0452

    9. [9]

      ZHANG Xuepan, LIU Lu, and ZHANG Xuejing. Parameterized pseudo-localization for accurate and efficient moving targets imaging in synthetic aperture radar[J]. Sensors, 2017, 17(8): 1714. doi: 10.3390/s17081714

    10. [10]

      LIU Congfeng and LIAO Guisheng. Canonical framework for multi-channel SAR-GMTI[J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 923–928. doi: 10.1016/S1004-4132(08)60176-0

    11. [11]

      YANG Jian. SAR ground moving target indication and imaging theory[M]. YANG Jian. Study on Ground Moving Target Indication and Imaging Technique of Airborne SAR. Singapore, Springer, 2017: 13–32.

    12. [12]

      WANG Xinyun, DENG Bin, WANG Hongqiang, et al. Ground moving target imaging based on motion compensation for circular SAR[C]. Proceedings of the 9th International Conference on Advanced Infocomm Technology (ICAIT), Chengdu, 2017: 372–377.

    13. [13]

      林晨晨, 黄普明, 李渝. 多通道SAR-GMTI技术的研究进展[J]. 电讯技术, 2017, 57(1): 118–126. doi: 10.3969/j.issn.1001-893x.2017.01.020
      LIN Chenchen, HUANG Puming, and LI Yu. Research progress in multichannel SAR-GMTI[J]. Telecommunication Engineering, 2017, 57(1): 118–126. doi: 10.3969/j.issn.1001-893x.2017.01.020

    14. [14]

      MAKHOUL E, BROQUETAS A, RODON J R, et al. A performance evaluation of SAR-GMTI missions for maritime applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2496–2509. doi: 10.1109/TGRS.2014.2360989

    15. [15]

      LV Gaohuan, WANG Junfeng, and LIU Xingzhao. Ground moving target indication in SAR images by symmetric defocusing[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 241–245. doi: 10.1109/LGRS.2012.2200232

  • 加载中
    1. [1]

      Fengshou HEYou HEZhunga LIUCong’an XU . Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition. Journal of Electronics and Information Technology, 2019, 41(0): 1-13. doi: 10.11999/JEIT180899

    2. [2]

      Jie PANShuai WANGDaojing LIXiaochun LU . A Channel Phase Error Compensation Method for Space Borne Array SAR Based on Antenna Pattern and Doppler Correlation Coefficient. Journal of Electronics and Information Technology, 2019, 41(7): 1758-1765. doi: 10.11999/JEIT181061

    3. [3]

      Yilin WANGShilong MANan ZOUGuolong LIANG . Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing. Journal of Electronics and Information Technology, 2019, 41(7): 1682-1689. doi: 10.11999/JEIT180796

    4. [4]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    5. [5]

      Shanchao YANGKangsheng TIANChangfei WU . Target Assignment Method for Phased Array Radar Network Based on Quality of Service. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181133

    6. [6]

      Baoqing XUYongbo ZHAOXiaojiao PANG . Joint Real-valued Beamspace-based Method for Angle Estimation in Bistatic MIMO Radar. Journal of Electronics and Information Technology, 2019, 41(7): 1721-1727. doi: 10.11999/JEIT180766

    7. [7]

      Zewen GUANJianwen CHENZheng BAO . A Modified Adaptive Sea Clutter Suppression Algorithm Based on PSNR-HOSVD for Skywave OTHR. Journal of Electronics and Information Technology, 2019, 41(7): 1743-1750. doi: 10.11999/JEIT180707

    8. [8]

      Zhen DAIPingbo WANGHongkai Wei . Signal Detection Based on Sigmoid Function in Non-Gaussian Noise. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190012

    9. [9]

      Xiaoqing TANGGuihui XIEYajun SHEShuai ZHANG . LoRa Backscatter Communication Method Based on Direct Digital Frequency Synthesis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190001

    10. [10]

      Xiaohan WANGTao WANGXiongwei LIYang ZHANGChangyang HUANG . A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190004

    11. [11]

      Nan SUFengzhou DAIHongwei LIU . Micro-motion Characteristic Analysis and Parameters Estimation for Blunt-nosed Chamfered Cone Based on HRRP Sequence. Journal of Electronics and Information Technology, 2019, 41(7): 1751-1757. doi: 10.11999/JEIT180520

    12. [12]

      Fei WANGShichao WUShaolin LIUYahui ZHANGYing WEI . Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT180900

    13. [13]

      Ying YUQinglong WUKaixuan SHAOYuxing KANGJian YANG . Saliency Detection Using Wavelet Transform in Hypercomplex Domain. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180738

    14. [14]

      Guangkai LIUHoude QUANHuixian SUNPeizhang CUIKuo CHIShaolin YAO . Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190157

    15. [15]

      Shuxin CHENLei HONGHao WUZhuowei LIULonghua YUE . Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181121

    16. [16]

      Gongguo XUGanlin SHANXiusheng DUANChenglin QIAOHaotian WANG . Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181129

    17. [17]

      Zijian TIANFangyuan HE . A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180857

    18. [18]

      Chunyan LIANGWenhao YUANYanling LIBin XIAWenzhu SUN . Speaker Recognition Using Discriminant Neighborhood Embedding. Journal of Electronics and Information Technology, 2019, 41(7): 1774-1778. doi: 10.11999/JEIT180761

    19. [19]

      Jie LIYuepeng YANXiaoxin LIANGJing WANKuisong WANG . Research on the Novel Ultra-wideband Power Divider Based on Beetle Antennae Search Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181003

    20. [20]

      Wei WANGKaili ZHOUYichang WANGGuang WANGJun YUAN . Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190037

Metrics
  • PDF Downloads(24)
  • Abstract views(283)
  • HTML views(172)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return