-
Advanced Search

Citation: Yongzhao DU, Yuling FAN, Peizhong LIU, Jianeng TANG, Yanmin LUO. Multi-populations Covariance Learning Differential Evolution Algorithm[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1488-1495. doi: 10.11999/JEIT180670 shu

Multi-populations Covariance Learning Differential Evolution Algorithm

  • Corresponding author: Jianeng TANG, 2812280164@qq.com
  • Received Date: 2018-07-06
    Accepted Date: 2019-01-28
    Available Online: 2019-06-01

Figures(2) / Tables(4)

  • The diversity of the population and the crossover operator algorithm play an important role in solving global optimization problems in Differential Evolution (DE). The Multi-poplutions Covariance learning Differential Evolution (MCDE) algorithm is proposed. Firstly, the population structure is a multi-poplutions mechanism, and each subpopulation combines the corresponding mutation strategy to ensure the individual diversity in the evolutionary process. Then, the covariance learning establishes a proper rotation coordinate system for the crossover operation in the population. At the same time, the adaptive control parameters are used to balance the ability of population survey and convergence. Finally, the proposed algorithm is conducted on 25 benchmark functions including unimodal, multimodal, shifted and high-dimensional test functions and compared with the state-of-the-art evolutionary algorithms. The experimental results show that the proposed algorithm compared with other algorithms has the best effect on solving the global optimization problem.
  • 加载中
    1. [1]

      STORN R and PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328

    2. [2]

      PARK S Y and LEE J J. Stochastic opposition-based learning using a beta distribution in differential evolution[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2184–2194. doi: 10.1109/TCYB.2015.2469722

    3. [3]

      ZHANG Xin and ZHANG Xiu. Improving differential evolution by differential vector archive and hybrid repair method for global optimization[J]. Soft Computing, 2017, 21(23): 7107–7116. doi: 10.1007/s00500-016-2253-4

    4. [4]

      SALLAM K M, ELSAYED S M, SARKER R A, et al. Landscape-based adaptive operator selection mechanism for differential evolution[J]. Information Sciences, 2017, 418–419: 383–404. doi: 10.1016/j.ins.2017.08.028

    5. [5]

      MOHAMED A W and SUGANTHAN P N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation[J]. Soft Computing, 2018, 22(10): 3215–3235. doi: 10.1007/s00500-017-2777-2

    6. [6]

      YANG Ming, LI Changhe, CAI Zhihua, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 302–315. doi: 10.1109/TCYB.2014.2339495

    7. [7]

      MALLIPEDDI R, SUGANTHAN P N, PAN Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679–1696. doi: 10.1016/j.asoc.2010.04.024

    8. [8]

      BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646–657. doi: 10.1109/TEVC.2006.872133

    9. [9]

      QIN K A, HUANG V L, and SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417. doi: 10.1109/TEVC.2008.927706

    10. [10]

      ZHANG Jingqiao and SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. doi: 10.1109/TEVC.2009.2014613

    11. [11]

      WANG Yong, CAI Zixing, and ZHANG Qingfu. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55–66. doi: 10.1109/TEVC.2010.2087271

    12. [12]

      WANG Yong, LI Hanxiong, HUANG Tingwen, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232–247. doi: 10.1016/j.asoc.2014.01.038

    13. [13]

      WANG Jiahai, LIAO Jianjun, ZHOU Ying, et al. Differential evolution enhanced with multiobjective sorting-based mutation operators[J]. IEEE Transactions on Cybernetics, 2017, 44(12): 2792–2805. doi: 10.1109/TCYB.2014.2316552

    14. [14]

      WU Guohua, MALLIPEDDI R, SUGANTHAN P N, et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information Sciences, 2016, 329: 329–345. doi: 10.1016/j.ins.2015.09.009

    15. [15]

      XUE Yu, JIANG Jiongming, ZHAO Binping, et al. A self-adaptive artificial bee colony algorithm based on global best for global optimization[J]. Soft Computing, 2018, 22(9): 2935–2952. doi: 10.1007/s00500-017-2547-1

    16. [16]

      KIRAN M S and BABALIK A. Improved artificial bee colony algorithm for continuous optimization problems[J]. Journal of Computer and Communications, 2014, 2: 108–116. doi: 10.4236/jcc.2014.24015

    17. [17]

      DU Wenbo, YING Wen, YAN Gang, et al. Heterogeneous strategy particle swarm optimization[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(4): 467–471. doi: 10.1109/TCSII.2016.2595597

    18. [18]

      DONG Wenyong, KANG Lanlan, and ZHANG Wensheng. Opposition-based particle swarm optimization with adaptive mutation strategy[J]. Soft Computing, 2017, 21(17): 5081–5090. doi: 10.1007/s00500-016-2102-5

    19. [19]

      HAN Honggui, LU Wei, and QIAO Junfei. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2754–2767. doi: 10.1109/TCYB.2017.2692385

    20. [20]

      HASSANAT A B A and ALKAFAWEEN E. On enhancing genetic algorithms using new crossovers[J]. International Journal of Computer Applications in Technology, 2018, 55(3): 202–212. doi: 10.1504/IJCAT.2017.10005868

    21. [21]

      SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. Technical Report, KanGAL Report #2005005, 2005: 1–50.

    22. [22]

      LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295. doi: 10.1109/TEVC.2005.857610

    23. [23]

      HANSEN N and OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary Computation, 2001, 9(2): 159–195. doi: 10.1162/106365601750190398

    24. [24]

      GARCíA-MARTíNEZ C, LOZANO M, HERRERA F, et al. Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research, 2008, 185(3): 1088–1113. doi: 10.1016/j.ejor.2006.06.043

  • 加载中
    1. [1]

      Gongguo XUGanlin SHANXiusheng DUANChenglin QIAOHaotian WANG . Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking. Journal of Electronics and Information Technology, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129

    2. [2]

      Jun LUOYongsong YANGBaoyu SHI . Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm. Journal of Electronics and Information Technology, 2019, 41(8): 2017-2024. doi: 10.11999/JEIT180949

    3. [3]

      Bing SUNHuailin RUANChenxi WUHua ZHONG . Direction of Arrival Estimation with Coprime Array Based on Toeplitz Covariance Matrix Reconstruction. Journal of Electronics and Information Technology, 2019, 41(8): 1924-1930. doi: 10.11999/JEIT181041

    4. [4]

      Xiaofeng WANGMingyue SUNWeimin GE . An Incremental Feature Extraction Method without Estimating Image Covariance Matrix. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT181138

    5. [5]

      Lin LILin WANGHongxia HANHongbing JILi JIANG . Research on the Adaptive Synchrosqueezing Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190146

    6. [6]

      Min TANGDong QIChengcheng LIUYongjun ZHAO . New Adaptive Beamformer for Coherent Interference Based on Multistage Blocking. Journal of Electronics and Information Technology, 2019, 41(7): 1705-1711. doi: 10.11999/JEIT180332

    7. [7]

      Guoce HUANGGuisheng WANGQinghua RENShufu DONGWeiting GAOShuai WEI . Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space. Journal of Electronics and Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891

    8. [8]

      Lian WANGHe ZHANGZhao ZHANGXunyang ZHANG . A Priority Scheduling Scheme Based on Adaptive Random Linear Network Coding. Journal of Electronics and Information Technology, 2019, 41(8): 1861-1868. doi: 10.11999/JEIT180885

    9. [9]

      Zhiqiang HOUShuai WANGXiufeng LIAOWangsheng YUJiaoyao WANGChuanhua CHEN . Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation. Journal of Electronics and Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921

    10. [10]

      Shuang LIANGWenlong HANGWei FENGXuejun LIU . Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181054

    11. [11]

      Zhi RENYuhui LÜZhaokun XUMingrui ZOUJieli TIAN . An Adaptive Directional MAC Protocol for Terahertz Wireless Personal Networks. Journal of Electronics and Information Technology, 2019, 41(1): 99-106. doi: 10.11999/JEIT180306

    12. [12]

      Yuning QIANYawei CHENJun SUN . Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform. Journal of Electronics and Information Technology, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394

    13. [13]

      Guangming TANGMingming JIANGYi SUN . Adaptive Color Image Steganography Based on Dynamic Distortion Modification. Journal of Electronics and Information Technology, 2019, 41(3): 656-665. doi: 10.11999/JEIT180388

    14. [14]

      Jing HOUMengkai HUZiwei WANG . An Improved Knowledge-aided Space-time Adaptive Signal Processing Algorithm for MIMO Radar. Journal of Electronics and Information Technology, 2019, 41(4): 795-800. doi: 10.11999/JEIT180557

    15. [15]

      Yang ZHAOChaoxuan SHANGZhuangzhi HANNing HANHui XIE . Fractional Fourier Transform and Compressed Sensing Adaptive Countering Smeared Spectrum Jamming. Journal of Electronics and Information Technology, 2019, 41(5): 1047-1054. doi: 10.11999/JEIT180569

    16. [16]

      Zhongtao LUOPeng LUYangyong ZHANGGang ZHANG . Adaptive Design of Limiters for Impulsive Noise Suppression. Journal of Electronics and Information Technology, 2019, 41(5): 1160-1166. doi: 10.11999/JEIT180609

    17. [17]

      Qiong WANGYajie LUOSifang LI . Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check. Journal of Electronics and Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

    18. [18]

      Guangwu CHENJianhao CHENGJuhua YANGHao LIULinjing ZHANG . Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter. Journal of Electronics and Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171

    19. [19]

      Wei WANGZiying HULinshu GONG . Adaptive Off-grid Calibration Method for MIMO Radar 3D Imaging. Journal of Electronics and Information Technology, 2019, 41(6): 1294-1301. doi: 10.11999/JEIT180145

    20. [20]

      Zengshan TIANYang WANGMu ZHOUPing WEI . Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm. Journal of Electronics and Information Technology, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637

Metrics
  • PDF Downloads(43)
  • Abstract views(353)
  • HTML views(225)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return