-
Advanced Search

Citation: Chen GUO, Tao JIAN, Congan XU, You HE, Shun SUN. Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1302-1309. doi: 10.11999/JEIT180677 shu

Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network

  • Corresponding author: Tao JIAN, work_jt@163.com
  • Received Date: 2018-07-06
    Accepted Date: 2019-01-10
    Available Online: 2019-06-01

Figures(4) / Tables(7)

  • In order to meet the demand for high real-time and high generalization performance of radar recognition, a radar High Resolution Range Profile (HRRP) recognition method based on deep multi-scale one dimension convolutional neural network is proposed. The multi-scale convolutional layer that can represent the complex features of HRRP is designed based on two features of the convolution kernels which are weight sharing and extraction of different fineness features from different scales, respectively. At last, the center loss function is used to improve the separability of features. Experimental results show that the model can greatly improve the accuracy of the target recognition under non-ideal conditions and solve the problem of the target aspect sensitivity, which also has good robustness and generalization performance.
  • 加载中
    1. [1]

      DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664

    2. [2]

      WANG Yu, ZHANG Liang, WANG Suixue, et al. Radar HRRP target recognition using scattering centers fuzzy matching[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059195.

    3. [3]

      PEI Bingnan and BAO Zheng. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1067–1074. doi: 10.1109/TAES.2005.1541451

    4. [4]

      JIANG Yue, HAN Yubing, and SHENG Weixing. Target recognition of radar HRRP using manifold learning with feature weighting[C]. Proceedings of 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, Nanjing, China, 2016: 1–3. doi: 10.1109/iWEM.2016.7505053.

    5. [5]

      ZHOU Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126: 52–64. doi: 10.1016/j.sigpro.2015.12.006

    6. [6]

      冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227
      FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics &Information Technology, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227

    7. [7]

      李龙, 刘峥. 基于核主分量相关判别分析特征提取方法的目标HRRP识别[J]. 电子与信息学报, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329
      LI Long and LIU Zheng. Kernel principal component correlation and discrimination analysis feature extraction method for target HRRP recognition[J]. Journal of Electronics &Information Technology, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329

    8. [8]

      GUO Yu, XIAO Huaitie, KAN Yingzhi, et al. Learning using privileged information for HRRP-based radar target recognition[J]. IET Signal Processing, 2018, 12(2): 188–197. doi: 10.1049/iet-spr.2016.0625

    9. [9]

      PAN Mian, JIANG Jie, KONG Qingpeng, et al. Radar HRRP target recognition based on T-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. doi: 10.1109/LGRS.2017.2726098

    10. [10]

      PAN Mian, JIANG Jie, LI Zhu, et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size[J]. Electronics Letters, 2016, 52(20): 1725–1727. doi: 10.1049/el.2016.3060

    11. [11]

      FENG Bo, CHEN Bo, and LIU Hongwei. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. doi: 10.1016/j.patcog.2016.08.012

    12. [12]

      YAN Huaqing, ZHANG Zenghui, XIONG Gang, et al. Radar HRRP recognition based on sparse denoising autoencoder and multi-layer perceptron deep model[C]. Proceedings of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, Shanghai, China, 2016: 283–288. doi: 10.1109/UPINLBS.2016.7809986.

    13. [13]

      ZHAI Ying, CHEN Bo, ZHANG Hao, et al. Robust variational auto-encoder for radar HRRP target recognition[C]. Proceedings of the 7th International Conference on Intelligent Science and Big Data Engineering, Dalian, China, 2017: 356–367. doi: 10.1007/978-3-319-67777-4_31.

    14. [14]

      ZHAO Feixiang, LIU Yongxiang, HUO Kai, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173. doi: 10.3390/s18010173

    15. [15]

      LUNDéN J and KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485271.

    16. [16]

      BENGIO Y I, GOODFELLOW I, and COURVILLE A. Deep Learning[M]. Cambridge, USA: MIT Press, 2016: 276–324.

    17. [17]

      SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.

    18. [18]

      SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.

    19. [19]

      WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.

  • 加载中
    1. [1]

      Fengshou HEYou HEZhunga LIUCong’an XU . Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition. Journal of Electronics and Information Technology, 2019, 41(0): 1-13. doi: 10.11999/JEIT180899

    2. [2]

      Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098

    3. [3]

      Yanjing SUNYunkai SHIXiao YUNXuran ZHUSainan WANG . Adaptive Strategy Fusion Target Tracking Based on Multi-layer Convolutional Features. Journal of Electronics and Information Technology, 2019, 41(10): 2464-2470. doi: 10.11999/JEIT180971

    4. [4]

      Huabiao QINQinping CAO . Design of Convolutional Neural Networks Hardware Acceleration Based on FPGA. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190058

    5. [5]

      Xin WANGKe LIChen NINGFengchen HUANG . Remote Sensing Image Classification Method Based on Deep Convolution Neural Network and Multi-kernel Learning. Journal of Electronics and Information Technology, 2019, 41(5): 1098-1105. doi: 10.11999/JEIT180628

    6. [6]

      Wei WANGKaili ZHOUYichang WANGGuang WANGJun YUAN . Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190037

    7. [7]

      Ye YUANKebin JIAPengyu LIU . Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190135

    8. [8]

      Zhengyi LIUQuntao DUANSong SHIPeng ZHAO . RGB-D Image Saliency Detection Based on Multi-modal Feature-fused Supervision. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190297

    9. [9]

      Peiliang WUXiao YANGBingyi MAOLingfu KONGZengguang HOU . A Perspective-independent Method for Behavior Recognition in Depth Video via Temporal-spatial Correlating. Journal of Electronics and Information Technology, 2019, 41(4): 904-910. doi: 10.11999/JEIT180477

    10. [10]

      Jing LIUHan LIUKaiyu HUANGLiyu SU . Automatic Rank Estimation Based Riemannian Optimization Matrix Completion Algorithm and Application to Image Completion. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181076

    11. [11]

      Fei WANGShichao WUShaolin LIUYahui ZHANGYing WEI . Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System. Journal of Electronics and Information Technology, 2019, 41(9): 2264-2272. doi: 10.11999/JEIT180900

    12. [12]

      Shan GAIZhongyun BAO . Banknote Recognition Research Based on Improved Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097

    13. [13]

      Ye ZHANGTing XUDingzhong FENGMeixian JIANGGuanghua WU . Research on Faster RCNN Object Detection Based on Hard Example Mining. Journal of Electronics and Information Technology, 2019, 41(6): 1496-1502. doi: 10.11999/JEIT180702

    14. [14]

      Yingkun HUANGWeidong JINPeng GEBing LI . Radar Emitter Signal Identification Based on Multi-scale Information Entropy. Journal of Electronics and Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535

    15. [15]

      Ying CHENHuangkang CHEN . Speaker Recognition Based on Multimodal GenerativeAdversarial Nets with Triplet-loss. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190154

    16. [16]

      Yongsheng ZHAODexiu HUZhixin LIUYongjun ZHAOChuang ZHAO . Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar. Journal of Electronics and Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858

    17. [17]

      Xiaohui TANZhaowei LIYachun FAN . Facial Expression Recognition Method Based on Multi-scale Detail Enhancement. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181088

    18. [18]

      Shuzhen CHENYijun ZHANGQiusheng LIAN . JPEG Compression Artifacts Reduction Algorithm Based on Multi-scale Dense Residual Network. Journal of Electronics and Information Technology, 2019, 41(10): 2479-2486. doi: 10.11999/JEIT180963

    19. [19]

      Xiuli BIYang WEIBin XIAOWeisheng LIJianfeng MA . Image Forgery Detection Algorithm Based on Cascaded Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190043

    20. [20]

      Hai LIJiawei RENJinlei SHANG . Hydrometeor Classification Method in Dual-polarization Weather Radar Based on Fuzzy Neural Network-fuzzy C-means. Journal of Electronics and Information Technology, 2019, 41(4): 809-815. doi: 10.11999/JEIT180529

Metrics
  • PDF Downloads(90)
  • Abstract views(680)
  • HTML views(265)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return