-
Advanced Search

Citation: Chen GUO, Tao JIAN, Congan XU, You HE, Shun SUN. Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1302-1309. doi: 10.11999/JEIT180677 shu

Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network

  • Corresponding author: Tao JIAN, work_jt@163.com
  • Received Date: 2018-07-06
    Accepted Date: 2019-01-10
    Available Online: 2019-06-01

Figures(4) / Tables(7)

  • In order to meet the demand for high real-time and high generalization performance of radar recognition, a radar High Resolution Range Profile (HRRP) recognition method based on deep multi-scale one dimension convolutional neural network is proposed. The multi-scale convolutional layer that can represent the complex features of HRRP is designed based on two features of the convolution kernels which are weight sharing and extraction of different fineness features from different scales, respectively. At last, the center loss function is used to improve the separability of features. Experimental results show that the model can greatly improve the accuracy of the target recognition under non-ideal conditions and solve the problem of the target aspect sensitivity, which also has good robustness and generalization performance.
  • 加载中
    1. [1]

      DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664

    2. [2]

      WANG Yu, ZHANG Liang, WANG Suixue, et al. Radar HRRP target recognition using scattering centers fuzzy matching[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059195.

    3. [3]

      PEI Bingnan and BAO Zheng. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1067–1074. doi: 10.1109/TAES.2005.1541451

    4. [4]

      JIANG Yue, HAN Yubing, and SHENG Weixing. Target recognition of radar HRRP using manifold learning with feature weighting[C]. Proceedings of 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, Nanjing, China, 2016: 1–3. doi: 10.1109/iWEM.2016.7505053.

    5. [5]

      ZHOU Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126: 52–64. doi: 10.1016/j.sigpro.2015.12.006

    6. [6]

      冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227
      FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics &Information Technology, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227

    7. [7]

      李龙, 刘峥. 基于核主分量相关判别分析特征提取方法的目标HRRP识别[J]. 电子与信息学报, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329
      LI Long and LIU Zheng. Kernel principal component correlation and discrimination analysis feature extraction method for target HRRP recognition[J]. Journal of Electronics &Information Technology, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329

    8. [8]

      GUO Yu, XIAO Huaitie, KAN Yingzhi, et al. Learning using privileged information for HRRP-based radar target recognition[J]. IET Signal Processing, 2018, 12(2): 188–197. doi: 10.1049/iet-spr.2016.0625

    9. [9]

      PAN Mian, JIANG Jie, KONG Qingpeng, et al. Radar HRRP target recognition based on T-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. doi: 10.1109/LGRS.2017.2726098

    10. [10]

      PAN Mian, JIANG Jie, LI Zhu, et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size[J]. Electronics Letters, 2016, 52(20): 1725–1727. doi: 10.1049/el.2016.3060

    11. [11]

      FENG Bo, CHEN Bo, and LIU Hongwei. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. doi: 10.1016/j.patcog.2016.08.012

    12. [12]

      YAN Huaqing, ZHANG Zenghui, XIONG Gang, et al. Radar HRRP recognition based on sparse denoising autoencoder and multi-layer perceptron deep model[C]. Proceedings of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, Shanghai, China, 2016: 283–288. doi: 10.1109/UPINLBS.2016.7809986.

    13. [13]

      ZHAI Ying, CHEN Bo, ZHANG Hao, et al. Robust variational auto-encoder for radar HRRP target recognition[C]. Proceedings of the 7th International Conference on Intelligent Science and Big Data Engineering, Dalian, China, 2017: 356–367. doi: 10.1007/978-3-319-67777-4_31.

    14. [14]

      ZHAO Feixiang, LIU Yongxiang, HUO Kai, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173. doi: 10.3390/s18010173

    15. [15]

      LUNDéN J and KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485271.

    16. [16]

      BENGIO Y I, GOODFELLOW I, and COURVILLE A. Deep Learning[M]. Cambridge, USA: MIT Press, 2016: 276–324.

    17. [17]

      SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.

    18. [18]

      SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.

    19. [19]

      WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.

  • 加载中
    1. [1]

      Fengshou HEYou HEZhunga LIUCong’an XU . Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition. Journal of Electronics and Information Technology, 2019, 41(0): 1-13. doi: 10.11999/JEIT180899

    2. [2]

      Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190098

    3. [3]

      Fei WANGShichao WUShaolin LIUYahui ZHANGYing WEI . Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT180900

    4. [4]

      Wei WANGKaili ZHOUYichang WANGGuang WANGJun YUAN . Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190037

    5. [5]

      Guangwu CHENJianhao CHENGJuhua YANGHao LIULinjing ZHANG . Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter. Journal of Electronics and Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171

    6. [6]

      Shuxin CHENLei HONGHao WUZhuowei LIULonghua YUE . Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181121

    7. [7]

      Yiwei PANHua PENGTianyun LIWenya WANG . A Novel Radiometric Signature of Time-Division Multiple Access Signals and Its Application to Specific Emitter Identification. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

    8. [8]

      Lun TANGRunlin MAHeng YANGQianbin CHEN . Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180770

    9. [9]

      Yun GELin MAShunliang JIANGFamao YE . The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval. Journal of Electronics and Information Technology, 2019, 0(0): 1-8. doi: 10.11999/JEIT190017

    10. [10]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    11. [11]

      Shanchao YANGKangsheng TIANChangfei WU . Target Assignment Method for Phased Array Radar Network Based on Quality of Service. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181133

    12. [12]

      Zhen DAIPingbo WANGHongkai Wei . Signal Detection Based on Sigmoid Function in Non-Gaussian Noise. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190012

    13. [13]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    14. [14]

      Jinfu XUJin WUJunwei LITongzhou QUYongxing DONG . Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism. Journal of Electronics and Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775

    15. [15]

      Hai LIYijing LIRenbiao WU . Generalized Adjacent Multi-beam Adaptive Processing Based Low-altitude Wind-shear Wind Speed Estimation under Aircraft Yawing. Journal of Electronics and Information Technology, 2019, 41(7): 1728-1734. doi: 10.11999/JEIT180758

    16. [16]

      Xinyu DAHaobo WANGZhangkai LUOHang HULei NIYu PAN . Dual-polarization Satellite Security Transmission Scheme Based on Double Layer Multi-Parameter Weighted-type FRactional Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(8): 1973-1981. doi: 10.11999/JEIT181135

    17. [17]

      Gongguo XUGanlin SHANXiusheng DUANChenglin QIAOHaotian WANG . Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181129

    18. [18]

      Chunyan LIANGWenhao YUANYanling LIBin XIAWenzhu SUN . Speaker Recognition Using Discriminant Neighborhood Embedding. Journal of Electronics and Information Technology, 2019, 41(7): 1774-1778. doi: 10.11999/JEIT180761

    19. [19]

      Ying CHENXiaoyue XU . Matrix Metric Learning for Person Re-identification Based on Bidirectional Reference Set. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190159

    20. [20]

      Yilin WANGShilong MANan ZOUGuolong LIANG . Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing. Journal of Electronics and Information Technology, 2019, 41(7): 1682-1689. doi: 10.11999/JEIT180796

Metrics
  • PDF Downloads(81)
  • Abstract views(378)
  • HTML views(190)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return