-
Advanced Search

Citation: Cheng TAO, Zhenqiao ZHAO, Tao ZHOU. Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1344-1351. doi: 10.11999/JEIT180680 shu

Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios

  • Corresponding author: Tao ZHOU, taozhou@bjtu.edu.cn
  • Received Date: 2018-07-09
    Accepted Date: 2019-01-10
    Available Online: 2019-06-01

Figures(9)

  • Cooperative MIMO technology can transform interference signals into useful signals by means of cooperative transmission or reception. It can solve the echo channel effect and improve the system capacity to be introduced into high-speed railway wireless communication. To master the channel characteristics of cooperative MIMO technology in high-speed railway scenarios, based on the geometric stochastic scattering theories, a new channel model for cooperative MIMO channel in high-speed railway scenarios is proposed, which can be applied to multiple high-speed railway scenarios by simply adjusting its several key parameters. Based on this model, the channel impulse response is calculated, the multi-link spatial correlation function is derived, the numerical calculation, simulation analysis and verification of measured data are carried out. Simulation results show that the multi-link spatial correlation is stronger when the LOS component is stronger and the angle spread of scattered components is smaller. The components which are scattered less times have a stronger spatial correlation. The theoretical model is verified by the measured data of the LTE special network of the Beijing-Tianjin high-speed railway section. These conclusions contribute to understanding the cooperative MIMO channels and conducting effective measurement activities.
  • 加载中
    1. [1]

      HOU H A and WANG H H. Analysis of distributed antenna system over high-speed railway communication[C]. Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, Sydney, Australia, 2012: 1300–1305.

    2. [2]

      ZHU Li, YU F R, NING Bin, et al. Design and performance enhancements in communication-based train control systems with coordinated multipoint transmission and reception[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1258–1272. doi: 10.1109/TITS.2014.2298409

    3. [3]

      KARAKAYALI M K, FOSCHINI G J, and VALENZUELA R A. Network coordination for spectrally efficient communications in cellular systems[J]. IEEE Wireless Communications, 2006, 13(4): 56–61. doi: 10.1109/MWC.2006.1678166

    4. [4]

      WANG Chengxiang, HONG Xuemin, GE Xiaohu, et al. Cooperative MIMO channel models: a survey[J]. IEEE Communications Magazine, 2010, 48(2): 80–87. doi: 10.1109/MCOM.2010.5402668

    5. [5]

      POUTANEN J, TUFVESSON F, HANEDA K, et al. Multi-link MIMO channel modeling using geometry-based approach[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 587–596. doi: 10.1109/TAP.2011.2122296

    6. [6]

      JIA Guiyuan, WU Muqing, ZHAO Min, et al. A 3-D channel model for high-speed railway communications in mountain scenario[J]. Lecture Notes in Electrical Engineering, 2014, 246: 1173–1181. doi: 10.1007/978-3-319-00536-2_133

    7. [7]

      GHAZAL A, YUAN Yi, WANG Chengxiang, et al. A non-stationary IMT-Advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2057–2068. doi: 10.1109/TWC.2016.2628795

    8. [8]

      LIU Yu, WANG Chengxiang, LOPEZ C, et al. 3D non-stationary wideband circular tunnel channel models for high-speed train wireless communication systems[J]. Science China Information Sciences, 2017, 60(8): 082304. doi: 10.1007/s11432-016-9004-4

    9. [9]

      WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018, 66(7): 3065–3078. doi: 10.1109/TCOMM.2017.2779128

    10. [10]

      CHENG Xiang, WANG Chengxiang, YUAN Yi, et al. A novel 3D regular-shaped geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[C]. Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference-Fall, Ottawa, Canada, 2010: 1–5.

    11. [11]

      廖勇, 胡异. 高速移动下U型槽的时变信道建模[J]. 计算机应用, 2017, 37(10): 2735–2741. doi: 10.11772/j.issn.1001-9081.2017.10.2735
      LIAO Yong and HU Yi. High-speed mobile time-varying channel modeling under U-shaped groove[J]. Journal of Computer Applications, 2017, 37(10): 2735–2741. doi: 10.11772/j.issn.1001-9081.2017.10.2735

    12. [12]

      CHENG Xiang, WANG Chengxiang, LAURENSON D I, et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 4824–4835. doi: 10.1109/TWC.2009.081560

    13. [13]

      GHAZAL A, WANG Chengxiang, HAAS H, et al. A non-stationary MIMO channel model for high-speed train communication systems[C]. Proceedings of the 2012 IEEE 75th Vehicular Technology Conference, Yokohama, Japan, 2012: 1–5.

    14. [14]

      ABDI A and KAVEH M. A space-time correlation model for multielement antenna systems in mobile fading channels[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 550–560. doi: 10.1109/49.995514

    15. [15]

      CHENG Xiang, WANG Chengxiang, AI Bo, et al. Investigation of multi-link spatial correlation properties for cooperative MIMO channels[C]. Proceedings of 2012 International Conference on Wireless Communications and Signal Processing, Huangshan, China, 2012: 1–7.

    16. [16]

      ABDI A, BARGER J A, and KAVEH M. A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 425–434. doi: 10.1109/TVT.2002.1002493

    17. [17]

      CHENG Xiang, WANG Chengxiang, WANG Haiming, et al. Cooperative MIMO channel modeling and multi-link spatial correlation properties[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(2): 388–396. doi: 10.1109/JSAC.2012.120218

    18. [18]

      ZHOU Tao, TAO Cheng, SALOUS S, et al. Measurements and analysis of angular characteristics and spatial correlation for high-speed railway channels[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 357–367. doi: 10.1109/TITS.2017.2681112

    19. [19]

      ZHOU Tao, TAO Cheng, SALOUS S, et al. Joint channel characteristics in high-speed railway multi-link propagation scenarios: measurement, analysis, and modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2018. doi: 10.1109/TITS.2018.2868973

  • 加载中
    1. [1]

      Xinhua LUCarles Navarro MANCHÓNZhongyong WANGChuanzong ZHANG . Channel Estimation Algorithm Using Temporal-Spatial Structure for Up-Link of Massive MIMO Systems. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180676

    2. [2]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    3. [3]

      Yuze SUXiangru MENGQiaoyan KANGXiaoyang HAN . Core Link Aware Survivable Virtual Network Link Protection Method. Journal of Electronics and Information Technology, 2019, 41(7): 1587-1593. doi: 10.11999/JEIT180737

    4. [4]

      Lei PUXinxi FENGZhiqiang HOUWangsheng YU . Robust Visual Tracking Based on Spatial Reliability Constraint. Journal of Electronics and Information Technology, 2019, 41(7): 1650-1657. doi: 10.11999/JEIT180780

    5. [5]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    6. [6]

      Ningning QINLei JINJian XUFan XULe YANG . Neighbor Information Constrained Node Scheduling in Stochastic Heterogeneous Wireless Sensor Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190094

    7. [7]

      Chunsheng TIANZhihong QIANXin WANGXue WANG . Research on Channel Selection and Power Control Strategy for D2D Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190149

    8. [8]

      Guangkai LIUHoude QUANHuixian SUNPeizhang CUIKuo CHIShaolin YAO . Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190157

    9. [9]

      Baoqing XUYongbo ZHAOXiaojiao PANG . Joint Real-valued Beamspace-based Method for Angle Estimation in Bistatic MIMO Radar. Journal of Electronics and Information Technology, 2019, 41(7): 1721-1727. doi: 10.11999/JEIT180766

    10. [10]

      Cheng TAOGuichao CHENKai LIUTao ZHOU . Performance Analysis of Massive MIMO-OFDM System with Hybrid-Precision Analog-to-Digital Converter. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181136

    11. [11]

      Jie PANShuai WANGDaojing LIXiaochun LU . A Channel Phase Error Compensation Method for Space Borne Array SAR Based on Antenna Pattern and Doppler Correlation Coefficient. Journal of Electronics and Information Technology, 2019, 41(7): 1758-1765. doi: 10.11999/JEIT181061

    12. [12]

      Yunjie GUYuxiang HUJichao XIE . A Spatial and Temporal Optimal Method of Service Function Chain Orchestration Based on Overlay Network Structure. Journal of Electronics and Information Technology, 2019, 0(0): 1-9. doi: 10.11999/JEIT190145

    13. [13]

      Ying YUQinglong WUKaixuan SHAOYuxing KANGJian YANG . Saliency Detection Using Wavelet Transform in Hypercomplex Domain. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180738

    14. [14]

      Shuxin CHENLei HONGHao WUZhuowei LIULonghua YUE . Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181121

    15. [15]

      Shibao LIShengzhi WANGJianhang LIUTingpei HUANGXin ZHANG . Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180599

    16. [16]

      Lun TANGRunlin MAHeng YANGQianbin CHEN . Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180770

    17. [17]

      Hai LIYijing LIRenbiao WU . Generalized Adjacent Multi-beam Adaptive Processing Based Low-altitude Wind-shear Wind Speed Estimation under Aircraft Yawing. Journal of Electronics and Information Technology, 2019, 41(7): 1728-1734. doi: 10.11999/JEIT180758

    18. [18]

      Xinyu DAHaobo WANGZhangkai LUOHang HULei NIYu PAN . Dual-polarization Satellite Security Transmission Scheme Based on Double Layer Multi-Parameter Weighted-type FRactional Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(8): 1973-1981. doi: 10.11999/JEIT181135

    19. [19]

      Gongguo XUGanlin SHANXiusheng DUANChenglin QIAOHaotian WANG . Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181129

    20. [20]

      Yiwei PANHua PENGTianyun LIWenya WANG . A Novel Radiometric Signature of Time-Division Multiple Access Signals and Its Application to Specific Emitter Identification. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

Metrics
  • PDF Downloads(22)
  • Abstract views(299)
  • HTML views(175)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return