-
Advanced Search

Citation: Cheng TAO, Zhenqiao ZHAO, Tao ZHOU. Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1344-1351. doi: 10.11999/JEIT180680 shu

Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios

  • Corresponding author: Tao ZHOU, taozhou@bjtu.edu.cn
  • Received Date: 2018-07-09
    Accepted Date: 2019-01-10
    Available Online: 2019-06-01

Figures(9)

  • Cooperative MIMO technology can transform interference signals into useful signals by means of cooperative transmission or reception. It can solve the echo channel effect and improve the system capacity to be introduced into high-speed railway wireless communication. To master the channel characteristics of cooperative MIMO technology in high-speed railway scenarios, based on the geometric stochastic scattering theories, a new channel model for cooperative MIMO channel in high-speed railway scenarios is proposed, which can be applied to multiple high-speed railway scenarios by simply adjusting its several key parameters. Based on this model, the channel impulse response is calculated, the multi-link spatial correlation function is derived, the numerical calculation, simulation analysis and verification of measured data are carried out. Simulation results show that the multi-link spatial correlation is stronger when the LOS component is stronger and the angle spread of scattered components is smaller. The components which are scattered less times have a stronger spatial correlation. The theoretical model is verified by the measured data of the LTE special network of the Beijing-Tianjin high-speed railway section. These conclusions contribute to understanding the cooperative MIMO channels and conducting effective measurement activities.
  • 加载中
    1. [1]

      HOU H A and WANG H H. Analysis of distributed antenna system over high-speed railway communication[C]. Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, Sydney, Australia, 2012: 1300–1305.

    2. [2]

      ZHU Li, YU F R, NING Bin, et al. Design and performance enhancements in communication-based train control systems with coordinated multipoint transmission and reception[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1258–1272. doi: 10.1109/TITS.2014.2298409

    3. [3]

      KARAKAYALI M K, FOSCHINI G J, and VALENZUELA R A. Network coordination for spectrally efficient communications in cellular systems[J]. IEEE Wireless Communications, 2006, 13(4): 56–61. doi: 10.1109/MWC.2006.1678166

    4. [4]

      WANG Chengxiang, HONG Xuemin, GE Xiaohu, et al. Cooperative MIMO channel models: a survey[J]. IEEE Communications Magazine, 2010, 48(2): 80–87. doi: 10.1109/MCOM.2010.5402668

    5. [5]

      POUTANEN J, TUFVESSON F, HANEDA K, et al. Multi-link MIMO channel modeling using geometry-based approach[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 587–596. doi: 10.1109/TAP.2011.2122296

    6. [6]

      JIA Guiyuan, WU Muqing, ZHAO Min, et al. A 3-D channel model for high-speed railway communications in mountain scenario[J]. Lecture Notes in Electrical Engineering, 2014, 246: 1173–1181. doi: 10.1007/978-3-319-00536-2_133

    7. [7]

      GHAZAL A, YUAN Yi, WANG Chengxiang, et al. A non-stationary IMT-Advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2057–2068. doi: 10.1109/TWC.2016.2628795

    8. [8]

      LIU Yu, WANG Chengxiang, LOPEZ C, et al. 3D non-stationary wideband circular tunnel channel models for high-speed train wireless communication systems[J]. Science China Information Sciences, 2017, 60(8): 082304. doi: 10.1007/s11432-016-9004-4

    9. [9]

      WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018, 66(7): 3065–3078. doi: 10.1109/TCOMM.2017.2779128

    10. [10]

      CHENG Xiang, WANG Chengxiang, YUAN Yi, et al. A novel 3D regular-shaped geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[C]. Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference-Fall, Ottawa, Canada, 2010: 1–5.

    11. [11]

      廖勇, 胡异. 高速移动下U型槽的时变信道建模[J]. 计算机应用, 2017, 37(10): 2735–2741. doi: 10.11772/j.issn.1001-9081.2017.10.2735
      LIAO Yong and HU Yi. High-speed mobile time-varying channel modeling under U-shaped groove[J]. Journal of Computer Applications, 2017, 37(10): 2735–2741. doi: 10.11772/j.issn.1001-9081.2017.10.2735

    12. [12]

      CHENG Xiang, WANG Chengxiang, LAURENSON D I, et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 4824–4835. doi: 10.1109/TWC.2009.081560

    13. [13]

      GHAZAL A, WANG Chengxiang, HAAS H, et al. A non-stationary MIMO channel model for high-speed train communication systems[C]. Proceedings of the 2012 IEEE 75th Vehicular Technology Conference, Yokohama, Japan, 2012: 1–5.

    14. [14]

      ABDI A and KAVEH M. A space-time correlation model for multielement antenna systems in mobile fading channels[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 550–560. doi: 10.1109/49.995514

    15. [15]

      CHENG Xiang, WANG Chengxiang, AI Bo, et al. Investigation of multi-link spatial correlation properties for cooperative MIMO channels[C]. Proceedings of 2012 International Conference on Wireless Communications and Signal Processing, Huangshan, China, 2012: 1–7.

    16. [16]

      ABDI A, BARGER J A, and KAVEH M. A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 425–434. doi: 10.1109/TVT.2002.1002493

    17. [17]

      CHENG Xiang, WANG Chengxiang, WANG Haiming, et al. Cooperative MIMO channel modeling and multi-link spatial correlation properties[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(2): 388–396. doi: 10.1109/JSAC.2012.120218

    18. [18]

      ZHOU Tao, TAO Cheng, SALOUS S, et al. Measurements and analysis of angular characteristics and spatial correlation for high-speed railway channels[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 357–367. doi: 10.1109/TITS.2017.2681112

    19. [19]

      ZHOU Tao, TAO Cheng, SALOUS S, et al. Joint channel characteristics in high-speed railway multi-link propagation scenarios: measurement, analysis, and modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2018. doi: 10.1109/TITS.2018.2868973

  • 加载中
    1. [1]

      Xinhua LUCarles Navarro MANCHÓNZhongyong WANGChuanzong ZHANG . Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180676

    2. [2]

      Hai HUANGXinxin FENGHongyu LIUJiao HOUYuying ZHAOLili YINJiuxing JIANG . Random Addition-chain Based Countermeasure Against Side-channel Attack for Advanced Encryption Standard. Journal of Electronics and Information Technology, 2019, 41(2): 348-354. doi: 10.11999/JEIT171211

    3. [3]

      Dan XUJixiang FUGuangcai SUNMengdao XINGTao SUZheng BAO . A Short Time 3D Geometry Reconstruction Method of Space Targets. Journal of Electronics and Information Technology, 2019, 41(8): 1952-1959. doi: 10.11999/JEIT180936

    4. [4]

      Weijia CUIPeng ZHANGBin BA . Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination. Journal of Electronics and Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181

    5. [5]

      Peng YIJichao XIEZhen ZHANGYunjie GUDan ZHAO . A Service Function Chain Deployment Method Against Side Channel Attack. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190127

    6. [6]

      Kai WANGXing LIJulong LANHongquan WEIShuxin LIU . A New Link Prediction Method for Complex Networks Based onTopological Effectiveness of Resource Transmission Paths. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190333

    7. [7]

      Liang JINAolin CAIKaizhi HUANGZhou ZHONGYangming LOU . Secret Key Generation Method Based on Multi-stream Random Signal. Journal of Electronics and Information Technology, 2019, 41(6): 1405-1412. doi: 10.11999/JEIT181040

    8. [8]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(10): 2325-2333. doi: 10.11999/JEIT190069

    9. [9]

      Qianbin CHENYouchao YANGYu ZHOUGuofan ZHAOLun TANG . Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning. Journal of Electronics and Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310

    10. [10]

      Yuze SUXiangru MENGQiaoyan KANGXiaoyang HAN . Core Link Aware Survivable Virtual Network Link Protection Method. Journal of Electronics and Information Technology, 2019, 41(7): 1587-1593. doi: 10.11999/JEIT180737

    11. [11]

      Jianxin GAIHaochen DUQi LIUZiquan TONG . Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix. Journal of Electronics and Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323

    12. [12]

      Huilan LUOFei LUYuan YAN . Action Recognition Based on Multi-model Voting with Cross Layer Fusion. Journal of Electronics and Information Technology, 2019, 41(3): 649-655. doi: 10.11999/JEIT180373

    13. [13]

      Baiqiang YINShudong WANGYigang HELei ZUOBing LIZhen CHENG . Electromagnetic Environment Complex Evaluation Algorithm Based on Fast S-transform and Time-frequency Space Model. Journal of Electronics and Information Technology, 2019, 41(1): 195-201. doi: 10.11999/JEIT180256

    14. [14]

      Wenjie LIFengpei GEPengyuan ZHANGYonghong YAN . Spatial Smoothing Regularization for Bi-direction Long Short-term Memory Model. Journal of Electronics and Information Technology, 2019, 41(3): 544-550. doi: 10.11999/JEIT180314

    15. [15]

      Kai WANGShuxin LIUHongchang CHENXing LI . A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes. Journal of Electronics and Information Technology, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553

    16. [16]

      Jun ZHAOXuewen ZENGZhichuan GUO . Design and Implementation of High Speed PCIe Cipher Card Supporting GM Algorithms. Journal of Electronics and Information Technology, 2019, 41(10): 2402-2408. doi: 10.11999/JEIT190003

    17. [17]

      Zhiqiang HOUShuai WANGXiufeng LIAOWangsheng YUJiaoyao WANGChuanhua CHEN . Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation. Journal of Electronics and Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921

    18. [18]

      Lin SHIBaofeng GUOJuntao MAChaoxuan SHANGHui XIEHuiyan ZENG . Rotation Center Estimation Algorithm for ISAR Image of the Space Target Based on Image Rotation and Correlation. Journal of Electronics and Information Technology, 2019, 41(6): 1280-1286. doi: 10.11999/JEIT181086

    19. [19]

      Xiaoping ZENGFeng YUXin JIANShiqi LIDerong DUXin JIANGWei FANG . Performance Analysis of Ultra-dense Networks Based on Coordinated Multiple-points Joint Transmission. Journal of Electronics and Information Technology, 2019, 41(3): 563-570. doi: 10.11999/JEIT180398

    20. [20]

      Weifeng SHIJinbao ZHUOYing LAN . A Novel Fuzzy Clustering Algorithm Based on Similarity of Attribute Space. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180974

Metrics
  • PDF Downloads(26)
  • Abstract views(354)
  • HTML views(195)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return