-
Advanced Search

Citation: Hongsong CHEN, Jingjiu CHEN. Recurrent Neural Networks Based Wireless Network Intrusion Detection and Classification Model Construction and Optimization[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1427-1433. doi: 10.11999/JEIT180691 shu

Recurrent Neural Networks Based Wireless Network Intrusion Detection and Classification Model Construction and Optimization

  • Corresponding author: Hongsong CHEN, chenhs@ustb.edu.cn
  • Received Date: 2018-07-10
    Accepted Date: 2019-01-07
    Available Online: 2019-06-01

Figures(5) / Tables(8)

  • In order to improve the comprehensive performance of the wireless network intrusion detection model, Recurrent Neural Network (RNN) algorithm is used to build a wireless network intrusion detection classification model. For the over-fitting problem of the classification model caused by the imbalance of training data samples distribution in wireless network intrusion detection, based on the pre-treatment of raw data cleaning, transformation, feature selection, etc., an instance selection algorithm based on window is proposed to refine the train data-set. The network structure, activation function and re-usability of the attack classification model are optimized experimentally, so the optimization model is obtained finally. The classification accuracy of the optimization model is 98.6699%, and the running time after the model reuse optimization is 9.13 s. Compared to other machine learning algorithms, the proposed approach achieves good results in classification accuracy and execution efficiency. The comprehensive performances of the proposed model are better than those of traditional intrusion detection model.
  • 加载中
    1. [1]

      CHEN Dong. A survey of IEEE 802.11 protocols: Comparison and prospective[C]. Proceedings of the 2017 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Chongqing, China, 2017: 589–598.

    2. [2]

      KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 184–208. doi: 10.1109/COMST.2015.2402161

    3. [3]

      KOLIAS C and KAMBOURAKIS G. Organizations requested the dataset[EB/OL]. http://icsdweb.aegean.gr/awid/download.html, 2018.

    4. [4]

      白琮, 黄玲, 陈佳楠, 等. 面向大规模图像分类的深度卷积神经网络优化[J]. 软件学报, 2018, 29(4): 1029–1038. doi: 10.13328/j.cnki.jos.005404
      BAI Cong, HUANG Ling, CHEN Jianan, et al. Optimization of deep convolutional neural network for large scale image classification[J]. Journal of Software, 2018, 29(4): 1029–1038. doi: 10.13328/j.cnki.jos.005404

    5. [5]

      ALOTAIBI B and ELLEITHY K. A majority voting technique for wireless intrusion detection systems[C]. Proceedings of 2016 IEEE Long Island Systems, Applications and Technology Conference, New York, USA, 2016: 1–6.

    6. [6]

      THING V L L. IEEE 802.11 network anomaly detection and attack classification: a deep learning approach[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.

    7. [7]

      YIN Chuanlong, ZHU Yuefei, FEI Jinlong, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 21954–21961. doi: 10.1109/ACCESS.2017.2762418

    8. [8]

      陈红松, 王钢, 宋建林. 基于云计算入侵检测数据集的内网用户异常行为分类算法研究[J]. 信息网络安全, 2018, 18(3): 1–7. doi: 10.3969/j.issn.1671-1122.2018.03.001
      CHEN Hongsong, WANG Gang, and SONG Jianlin. Research on anomaly behavior classification algorithm of internal network user based on cloud computing intrusion detection data set[J]. Netinfo Security, 2018, 18(3): 1–7. doi: 10.3969/j.issn.1671-1122.2018.03.001

    9. [9]

      MARTENS J and SUTSKEVER I. Learning recurrent neural networks with hessian-free optimization[C]. Proceedings of the 20th International Conference on Machine Learning, Washington, USA, 2011: 1033–1040.

    10. [10]

      ABADI M, BARHAM P, CHEN Zhifeng, et al. Tensorflow: a system for large-scale machine learning[C]. Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, Savannah, USA, 2016: 265–283.

    11. [11]

      KIM J, KIM J, LE THI THU H, et al. Long short term memory recurrent neural network classifier for intrusion detection[C]. Proceedings of 2016 International Conference on Platform Technology and Service, Jeju, South Korea, 2016: 1–5.

    12. [12]

      ZHOU Guobing, WU Jianxin, ZHANG Chenlin, et al. Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing, 2016, 13(3): 226–234. doi: 10.1007/s11633-016-1006-2

  • 加载中
    1. [1]

      Wei WANGKaili ZHOUYichang WANGGuang WANGJun YUAN . Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190037

    2. [2]

      Guangwu CHENJianhao CHENGJuhua YANGHao LIULinjing ZHANG . Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter. Journal of Electronics and Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171

    3. [3]

      Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190098

    4. [4]

      Fengshou HEYou HEZhunga LIUCong’an XU . Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition. Journal of Electronics and Information Technology, 2019, 41(0): 1-13. doi: 10.11999/JEIT180899

    5. [5]

      Chunsheng TIANZhihong QIANXin WANGXue WANG . Research on Channel Selection and Power Control Strategy for D2D Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190149

    6. [6]

      Yunjie GUYuxiang HUJichao XIE . A Spatial and Temporal Optimal Method of Service Function Chain Orchestration Based on Overlay Network Structure. Journal of Electronics and Information Technology, 2019, 0(0): 1-9. doi: 10.11999/JEIT190145

    7. [7]

      Zhen DAIPingbo WANGHongkai Wei . Signal Detection Based on Sigmoid Function in Non-Gaussian Noise. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190012

    8. [8]

      Yilin WANGShilong MANan ZOUGuolong LIANG . Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing. Journal of Electronics and Information Technology, 2019, 41(7): 1682-1689. doi: 10.11999/JEIT180796

    9. [9]

      Huan ZHANGHong LEI . An Error Bound of Signal Recovery for Penalized Programs in Linear Inverse Problems. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT181125

    10. [10]

      Yaguan QIANHongbo LUShouling JIWujie ZHOUShuhui WUBensheng YUNXiangxing TAOJingsheng LEI . Adversarial Example Generation Based on Particle Swarm Optimization. Journal of Electronics and Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777

    11. [11]

      Xiaolong LIU . Application of Improved Multiverse Algorithm to Large Scale Optimization Problems. Journal of Electronics and Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751

    12. [12]

      Xiaohan WANGTao WANGXiongwei LIYang ZHANGChangyang HUANG . A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190004

    13. [13]

      Fei WANGShichao WUShaolin LIUYahui ZHANGYing WEI . Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT180900

    14. [14]

      Ying YUQinglong WUKaixuan SHAOYuxing KANGJian YANG . Saliency Detection Using Wavelet Transform in Hypercomplex Domain. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180738

    15. [15]

      Guangkai LIUHoude QUANHuixian SUNPeizhang CUIKuo CHIShaolin YAO . Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190157

    16. [16]

      Xianzhong XIEJia LIQian HUANGJie CHEN . Optimal Scheme of Resource Allocation for Ultra-reliable and Low-latency in Machine Type Communications Based on Non-orthogonal Multiple Access with Short Block Transmission. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190128

    17. [17]

      Rong CHAILing WANGMinglong CHENQianbin CHEN . Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT180408

    18. [18]

      Gongguo XUGanlin SHANXiusheng DUANChenglin QIAOHaotian WANG . Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181129

    19. [19]

      Qiong WANGYajie LUOSifang LI . Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check. Journal of Electronics and Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

    20. [20]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190069

Metrics
  • PDF Downloads(55)
  • Abstract views(402)
  • HTML views(222)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return