-
Advanced Search

Citation: Ye ZHANG, Ting XU, Dingzhong FENG, Meixian JIANG, Guanghua WU. Research on Faster RCNN Object Detection Based on Hard Example Mining[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1496-1502. doi: 10.11999/JEIT180702 shu

Research on Faster RCNN Object Detection Based on Hard Example Mining

  • Corresponding author: Meixian JIANG, 1056294025@qq.com
  • Received Date: 2018-07-13
    Accepted Date: 2019-01-28
    Available Online: 2019-06-01

Figures(4) / Tables(4)

  • Because of the classic Faster RCNN training proccess with too many difficult training samples and low recall rate problem, a method which combines the techniques of Online Hard Example Mining (OHEM) and Hard Negative Example Mining (HNEM) is adopted, which carries out the error transfer for the difficult samples using its corresponding maximum loss value from real-time filtering. It solves the problem of low detection of hard example and improves the efficiency of the model training. To improve the recall rate and generalization of the model, an improved Non-Maximum Suppression (NMS) algorithm is proposed by setting confidence thresholds penalty function; In addition, multi-scale training and data augmentation are also introduced. Finally, the results before and after improvement are compared: Sensibility experiments show that the algorithm achieves good results in VOC2007 data set and VOC2012 data set, with the mean Average Percision (mAP) increasing from 69.9% to 74.40%, and 70.4% to 79.3% respectively, which demonstrates strongly the superiority of the algorithm.
  • 加载中
    1. [1]

      吕博云. 数字图像处理技术及应用研究[J]. 科技与创新, 2018(2): 146–147. doi: 10.15913/j.cnki.kjycx.2018.02.146
      LÜ Boyun. Research on the technology and application of digital image processing[J]. Science and Technology &Innovation, 2018(2): 146–147. doi: 10.15913/j.cnki.kjycx.2018.02.146

    2. [2]

      王湘新, 时洋, 文梅. CNN卷积计算在移动GPU上的加速研究[J]. 计算机工程与科学, 2018, 40(1): 34–39. doi: 10.3969/j.issn.1007-130X.2018.01.005
      WANG Xiangxin, SHI Yang, and WEN Mei. Accelerating CNN on mobile GPU[J]. Computer Engineering &Science, 2018, 40(1): 34–39. doi: 10.3969/j.issn.1007-130X.2018.01.005

    3. [3]

      胡炎, 单子力, 高峰. 基于Faster-RCNN和多分辨率SAR的海上舰船目标检测[J]. 无线电工程, 2018, 48(2): 96–100. doi: 10.3969/j.issn.1003-3106.2018.02.04
      HU Yan, SHAN Zili, and GAO Feng. Ship detection based on faster-RCNN and multiresolution SAR[J]. Radio Engineering, 2018, 48(2): 96–100. doi: 10.3969/j.issn.1003-3106.2018.02.04

    4. [4]

      GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.

    5. [5]

      REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031

    6. [6]

      FELZENSZWALB P, MCALLESTER D, and RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587597.

    7. [7]

      YAN Junjie, LEI Zhen, WEN Longyin, et al. The fastest deformable part model for object detection[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2497–2504.

    8. [8]

      FORSYTH D. Object detection with discriminatively trained part-based models[J]. Computer, 2014, 47(2): 6–7. doi: 10.1109/MC.2014.42

    9. [9]

      DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893. doi: 10.1109/CVPR.2005.177.

    10. [10]

      WANG Xiaoyu, HAN T X, and YAN Shuicheng. An HOG-LBP human detector with partial occlusion handling[C]. Proceedings of 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 32–39. doi: 10.1109/ICCV.2009.5459207.

    11. [11]

      ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162. doi: 10.1109/CVPR.2014.276.

    12. [12]

      NEUBECK A and VAN GOOL L. Efficient non-maximum suppression[C]. Proceedings of the 18th International Conference on Pattern Recognition, Hongkong, China, 2006: 850–855. doi: 10.1109/ICPR.2006.479.

    13. [13]

      李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 18–23.
      LI Hang. Statistical Learning Method[M]. Beijing: Tsinghua University Press, 2012: 18–23.

    14. [14]

      周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 23–35.
      ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 23–35.

    15. [15]

      SUN Changming and VALLOTTON P. Fast linear feature detection using multiple directional non-maximum suppression[J]. Journal of Microscopy, 2009, 234(2): 147–157. doi: 10.1111/jmi.2009.234.issue-2

  • 加载中
    1. [1]

      Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190098

    2. [2]

      Fei WANGShichao WUShaolin LIUYahui ZHANGYing WEI . Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT180900

    3. [3]

      Yaguan QIANHongbo LUShouling JIWujie ZHOUShuhui WUBensheng YUNXiangxing TAOJingsheng LEI . Adversarial Example Generation Based on Particle Swarm Optimization. Journal of Electronics and Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777

    4. [4]

      Ming YINWenjie WANGXuanyu ZHANGJijiao JIANG . A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table. Journal of Electronics and Information Technology, 2019, 41(8): 2008-2016. doi: 10.11999/JEIT180692

    5. [5]

      Lun TANGYannan WEIRunlin MAXiaoyu HEQianbin CHEN . Online Learning-based Virtual Resource Allocation for Network Slicing in Virtualized Cloud Radio Access Network. Journal of Electronics and Information Technology, 2019, 41(7): 1533-1539. doi: 10.11999/JEIT180771

    6. [6]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    7. [7]

      Shuxin CHENLei HONGHao WUZhuowei LIULonghua YUE . Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181121

    8. [8]

      Yilin WANGShilong MANan ZOUGuolong LIANG . Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing. Journal of Electronics and Information Technology, 2019, 41(7): 1682-1689. doi: 10.11999/JEIT180796

    9. [9]

      Zhen DAIPingbo WANGHongkai Wei . Signal Detection Based on Sigmoid Function in Non-Gaussian Noise. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190012

    10. [10]

      Shibao LIShengzhi WANGJianhang LIUTingpei HUANGXin ZHANG . Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180599

    11. [11]

      Zewen GUANJianwen CHENZheng BAO . A Modified Adaptive Sea Clutter Suppression Algorithm Based on PSNR-HOSVD for Skywave OTHR. Journal of Electronics and Information Technology, 2019, 41(7): 1743-1750. doi: 10.11999/JEIT180707

    12. [12]

      Changyu HULing WANGDongqiang ZHU . Sparse ISAR Imaging Exploiting Dictionary Learning. Journal of Electronics and Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747

    13. [13]

      Yang ZHOUJiayi WUYu LUHaibing YIN . Depth Map Error Concealment for 3D High Efficiency Video Coding. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180926

    14. [14]

      Yang LIWeitao ZHANGShuntian LOU . Deep Convolution Blind Separation of Acoustic Signals Based on Joint Diagonalization. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190067

    15. [15]

      Ying CHENXiaoyue XU . Matrix Metric Learning for Person Re-identification Based on Bidirectional Reference Set. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190159

    16. [16]

      Xiaoheng ZHANGYongming LIPin WANGXiaoping ZENGFang YANYanling ZHANGOumei CHENG . Classification Algorithm of Parkinson’s Disease Based on Convolutional Sparse Transfer Learning and Sample/Feature Parallel Selection. Journal of Electronics and Information Technology, 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792

    17. [17]

      Li WANGYifan CAOGaoming DUGuanyu LIUXiaolei WANGDuoli ZHANG . A Low-latency Depth Modelling Mode-1 Encoder in 3D-high Efficiency Video Coding Standard. Journal of Electronics and Information Technology, 2019, 41(7): 1625-1632. doi: 10.11999/JEIT180798

    18. [18]

      Wenshan CONGLan YUJianghai WO . A Grating Lobe Suppression Method of Wideband Real Time Delay Pattern Based on Particle Swarm Optimization Algorithm. Journal of Electronics and Information Technology, 2019, 41(7): 1698-1704. doi: 10.11999/JEIT180719

    19. [19]

      Xiaohan WANGTao WANGXiongwei LIYang ZHANGChangyang HUANG . A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190004

    20. [20]

      Shanchao YANGKangsheng TIANChangfei WU . Target Assignment Method for Phased Array Radar Network Based on Quality of Service. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181133

Metrics
  • PDF Downloads(23)
  • Abstract views(264)
  • HTML views(128)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return