-
Advanced Search

Citation: Miao CUI, Xin YU, Xueyi LI, Guangchi ZHANG, Yijun LIU. Joint Downlink and Uplink Resource Allocation for Multi-user Multi-carrier Simultaneous Wireless Information and Power Transfer Systems[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1359-1364. doi: 10.11999/JEIT180762 shu

Joint Downlink and Uplink Resource Allocation for Multi-user Multi-carrier Simultaneous Wireless Information and Power Transfer Systems

  • Corresponding author: Guangchi ZHANG, gczhang@gdut.edu.cn
  • Received Date: 2018-08-03
    Accepted Date: 2019-03-05
    Available Online: 2019-06-01

Figures(7)

  • Simultaneous Wireless Information and Power Transfer (SWIPT) is an effective technique to solve the energy limitation problem of wireless networks. A multi-carrier SWIPT communication system that includes one Base Station (BS) and multiple users is investigated. Both the uplink and downlink of the system apply the OFDM transmission. In the downlink, the BS transmits information and power over different subcarriers to the users simultaneously. In the uplink, the user transmits information to the BS by using the power harvested from the BS in the downlink. This paper aims to maximize the weighted sum of the downlink and uplink achievable rates by jointly optimizing subcarrier allocation and power allocation of the uplink and downlink. An optimal algorithm is proposed to solve this resulted optimization problem, which is based on the Lagrange duality method and the ellipsoid method. The performances of the proposed algorithm are verified by computer simulations.
  • 加载中
    1. [1]

      VARSHNEY L R. Transporting information and energy simultaneously[C]. Proceedings of 2008 IEEE International Symposium on Information Theory, Toronto, Canada, 2008: 1612–1616. doi: 10.1109/ISIT.2008.4595260.

    2. [2]

      LIU Liang, ZHANG Rui, and CHUA K C. Wireless information transfer with opportunistic energy harvesting[J]. IEEE Transactions on Wireless Communications, 2013, 12(1): 288–300. doi: 10.1109/TWC.2012.113012.120500

    3. [3]

      LIU Liang, ZHANG Rui, and CHUA K C. Secrecy wireless information and power transfer with MISO beamforming[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1850–1863. doi: 10.1109/tsp.2014.2303422

    4. [4]

      ZHANG Guangchi, XU Jie, WU Qingqing, et al. Wireless powered cooperative jamming for secure OFDM system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1331–1346. doi: 10.1109/TVT.2017.2756877

    5. [5]

      ZHANG Guangchi, LI Xueyi, CUI Miao, et al. Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple-output relaying systems[J]. IET Communications, 2016, 10(7): 796–804. doi: 10.1049/iet-com.2015.0482

    6. [6]

      LI Xueyi, ZHANG Qi, ZHANG Guangchi, et al. Joint resource allocation with subcarrier pairing in cooperative OFDM DF multi-relay networks[J]. IET Communications, 2015, 9(1): 78–87. doi: 10.1049/iet-com.2014.0346

    7. [7]

      LI Xueyi, ZHANG Qi, ZHANG Guangchi, et al. Joint source and relays power allocation for MIMO AF multi-relay networks[J]. Wireless Personal Communications, 2015, 83(3): 1915–1926. doi: 10.1007/s11277-015-2494-z

    8. [8]

      LU Weidang, GONG Yi, WU Jiaying, et al. Simultaneous wireless information and power transfer based on joint subcarrier and power allocation in OFDM systems[J]. IEEE Access, 2017, 5: 2763–2770. doi: 10.1109/ACCESS.2017.2671903

    9. [9]

      NA Zhenyu, LI Xiaotong, LIU Xin, et al. Subcarrier allocation based simultaneous wireless information and power transfer for multiuser OFDM systems[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017: 148. doi: 10.1186/s13638-017-0932-1

    10. [10]

      GE Xiaohu, SUN Yang, GHARAVI H, et al. Joint Optimization of computation and communication power in multi-user massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4051–4063. doi: 10.1109/TWC.2018.2819653

    11. [11]

      GE Xiaohu, HUANG Xi, WANG Yuming, et al. Energy-efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5): 2127–2138. doi: 10.1109/TVT.2014.2310773

    12. [12]

      LIN Xiang, GE Xiaohu, WANG Chengxiang, et al. Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption[J]. IEEE Transactions on Wireless Communications, 2013, 12(3): 961–973. doi: 10.1109/TWC.2013.011713.112157

    13. [13]

      张广驰, 曾志超, 崔苗, 等. 无线供电混合多址接入网络的资源分配[J]. 电子与信息学报, 2018, 40(12): 3013–3019.
      ZHANG Guangchi, ZENG Zhichao, CUI Miao, et al. Resource allocation for wireless powered hybrid multiple access networks[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3013–3019.

    14. [14]

      YU Wei and LUI R. Dual methods for nonconvex spectrum optimization of multicarrier systems[J]. IEEE Transactions on Communications, 2006, 54(7): 1310–1322. doi: 10.1109/tcomm.2006.877962

    15. [15]

      BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge UK: Cambridge University Press, 2009: 561–615.

  • 加载中
    1. [1]

      Gang ZHANGHexiang CHENTianqi ZHANG . A Multiuser Noise Reduction Differential Chaos Shift Keying System. Journal of Electronics and Information Technology, 2019, 41(2): 362-368. doi: 10.11999/JEIT171173

    2. [2]

      Gang ZHANGChangchang ZHAOTianqi ZHANG . Performance Analysis of Short Reference Orthogonal Multiuser Differential Chaotic Shift Keying Scheme. Journal of Electronics and Information Technology, 2019, 41(9): 2055-2062. doi: 10.11999/JEIT181038

    3. [3]

      Lun TANGRunlin MAHeng YANGQianbin CHEN . Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA. Journal of Electronics and Information Technology, 2019, 41(9): 2039-2046. doi: 10.11999/JEIT180770

    4. [4]

      Damin ZHANGHuijuan ZHANGWei YANZhongyun CHENZiyun XIN . D2D Resource Allocation Mechanism Based on Energy EfficiencyOptimization in Heterogeneous Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190042

    5. [5]

      Ruyan WANGHongjuan LIDapeng WU . Stackelberg Game-based Resource Allocation Strategy in Virtualized Wireless Sensor Network. Journal of Electronics and Information Technology, 2019, 41(2): 377-384. doi: 10.11999/JEIT180277

    6. [6]

      Yu XIONGYaya YANGZhenzhen ZHANGJing JIANG . Resource Allocation Based on Bandwidth Prediction in Software-defined Time and Wavelength Division Multiplexed Passive Optical Network. Journal of Electronics and Information Technology, 2019, 41(8): 1885-1892. doi: 10.11999/JEIT180837

    7. [7]

      Lun TANGXixi YANGYingjie SHIQianbin CHEN . ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks. Journal of Electronics and Information Technology, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048

    8. [8]

      Ruyan WANGNingning XUDapeng WU . Energy Consumption and Delay-aware Resource Allocation Mechanism for Virtualization Cloud Radio Access Network. Journal of Electronics and Information Technology, 2019, 41(1): 83-90. doi: 10.11999/JEIT180063

    9. [9]

      Lun TANGYannan WEIRunlin MAXiaoyu HEQianbin CHEN . Online Learning-based Virtual Resource Allocation for Network Slicing in Virtualized Cloud Radio Access Network. Journal of Electronics and Information Technology, 2019, 41(7): 1533-1539. doi: 10.11999/JEIT180771

    10. [10]

      Bo XIAOKai HUOYongxiang LIU . Development and Prospect of Radar and Communication Integration. Journal of Electronics and Information Technology, 2019, 41(3): 739-750. doi: 10.11999/JEIT180515

    11. [11]

      Fan YANGHui JIABaoshu LIUKeyu LONG . Performance Analysis of Broadband Power-line Communications Systems Under the Alpha-stable Impulsive Noise. Journal of Electronics and Information Technology, 2019, 41(6): 1374-1380. doi: 10.11999/JEIT180261

    12. [12]

      Ruyan WANGYingjie LIANGYaping CUI . Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190074

    13. [13]

      Liang LIANGYanfei WUGang FENG . Resource Allocation Algorithm of Network Slicing Based on Online Auction. Journal of Electronics and Information Technology, 2019, 41(5): 1187-1193. doi: 10.11999/JEIT180636

    14. [14]

      Meiling DAIZhoubin LIUShaoyong GUOSujie SHAOXuesong QIU . A Computation Offloading and Resource Allocation Mechanism Based on Minimizing Devices Energy Consumption and System Delay. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180970

    15. [15]

      Ruyan WANGHongjuan LIDapeng WUHongxia LI . Semi-Markov Decision Process-based Resource Allocation Strategy for Virtual Sensor Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190016

    16. [16]

      Haibo ZHANGHu LIShanxue CHENXiaofan HE . Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation. Journal of Electronics and Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592

    17. [17]

      Jixian ZHANGNing XIEXuejie ZHANGWeidong LI . Supervised Learning Based Truthful Auction Mechanism Design in Cloud Computing. Journal of Electronics and Information Technology, 2019, 41(5): 1243-1250. doi: 10.11999/JEIT180587

    18. [18]

      Bin SHENHebiao WUTaiping CUIQianbin CHEN . An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190270

    19. [19]

      Lun TANGYu ZHOUYouchao YANGGuofan ZHAOQianbin CHEN . Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing. Journal of Electronics and Information Technology, 2019, 41(9): 2071-2078. doi: 10.11999/JEIT180894

    20. [20]

      Lun TANGYu ZHOUQi TANYannan WEIQianbin CHEN . Virtual Network Function Migration Algorithm Based on Reinforcement Learning for 5G Network Slicing. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190290

Metrics
  • PDF Downloads(27)
  • Abstract views(407)
  • HTML views(207)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return