高级搜索

基于非正交多址接入中继通信系统的功率优化

黄容兰 刘云 李啟尚 唐文

引用本文: 黄容兰, 刘云, 李啟尚, 唐文. 基于非正交多址接入中继通信系统的功率优化[J]. 电子与信息学报, 2019, 41(8): 1909-1915. doi: 10.11999/JEIT180842 shu
Citation:  Ronglan HUANG, Yun LIU, Qishang LI, Wen TANG. Power Allocation Optimization of Cooperative Relaying Systems Using Non-orthogonal Multiple Access[J]. Journal of Electronics and Information Technology, 2019, 41(8): 1909-1915. doi: 10.11999/JEIT180842 shu

基于非正交多址接入中继通信系统的功率优化

    作者简介: 黄容兰: 女,1982年生,硕士,讲师,研究方向为物理层技术与多用户检测、无线网络通信资源分配与调度;
    刘云: 男,1980年生,博士,副教授,研究方向为无线通信,水声通信、扩频与码分多址理论;
    李啟尚: 男,1986年生,助教,研究方向为电子技术设计与应用;
    唐文: 女,1984年生,讲师,研究方向为电子技术设计与应用
    通讯作者: 刘云,lauwin007@yahoo.com
  • 基金项目: 国家自然科学基金(61501531);梧州学院2012校级科研项目(2012C001)

摘要: 针对基于非正交多址接入(NOMA)技术的中继通信系统,在兼顾系统性能与计算复杂度的基础上,该文提出一种结合统计信道信息(S-CSI)和瞬时信道信息(I-CSI)的混合功率分配策略(H-PAS)来有效实现上述折中。仿真结果表明,NOMA方案在H-PAS策略下,一方面比单纯利用S-CSI时的传统正交多址接入技术具有更高的频谱效率;另一方面在和速率差别不大的情况下,又比单纯利用I-CSI时的NOMA方案具有更低的信令开销和计算复杂度。

English

    1. [1]

      李钊, 戴晓琴, 陈柯宇, 等. 非正交多址接入下行链路用户匹配与功率优化算法[J]. 电子与信息学报, 2017, 39(8): 1804–1811. doi: 10.11999/JEIT161197
      LI Zhao, DAI Xiaoqin, CHEN Keyu, et al. User matching and power optimization algorithm for downlink NOMA[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1804–1811. doi: 10.11999/JEIT161197

    2. [2]

      ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116

    3. [3]

      HIGUCHI K and BENJEBBOUR A. Non-Orthogonal Multiple Access (NOMA) with successive interference cancellation for future radio access[J]. IEICE Transactions on Communications, 2015, E98-B(3): 403–414. doi: 10.1587/transcom.e98.b.403

    4. [4]

      TIMOTHEOU S and KRIKIDIS I. Fairness for non-orthogonal multiple access in 5G systems[J]. IEEE Signal Processing Letters, 2015, 22(10): 1647–1651. doi: 10.1109/LSP.2015.2417119

    5. [5]

      Study on downlink multiuser superposition transmission for LTE[R]. 3GPP TSG RAN #67. RP-150496. Shanghai: 3rd Generation Partnership Project, 2015.

    6. [6]

      SAITO Y, BENJEBBOUR A, KISHIYAMA Y, et al. System-level performance of downlink Non-Orthogonal Multiple Access (NOMA) under various environments[C]. Proceedings of 2015 IEEE 81st Vehicular Technology Conference, Glasgow, UK, 2015: 1–5. doi: 10.1109/VTCSpring.2015.7146120.

    7. [7]

      DING Zhiguo, YANG Zheng, FAN Pingzhi, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users[J]. IEEE Signal Processing Letters, 2014, 21(12): 1501–1505. doi: 10.1109/LSP.2014.2343971

    8. [8]

      Al-Imari M, XIAO P, ALI I M, et al. Uplink non-orthogonal multiple access for 5G wireless networks[C]. 2014 IEEE Wireless Communications Systems Conference, Barcelona, Spain, 2014: 781–785.

    9. [9]

      吴广富, 邓天垠, 苏开荣, 等. 基于非正交多址接入系统的多用户分组优化算法[J]. 电子与信息学报, 2018, 40(9): 2080–2087. doi: 10.11999/JEIT171220
      WU Guangfu, DENG Tianyin, SU Kairong, et al. Multi-user grouping optimization algorithm based on non-orthogonal multiple access systems[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2080–2087. doi: 10.11999/JEIT171220

    10. [10]

      KONG Qinglei, LU Rongxing, CHEN Shuo, et al. Achieve secure handover session key management via mobile relay in LTE-advanced networks[J]. IEEE Internet of Things Journal, 2017, 4(1): 29–39. doi: 10.1109/JIOT.2016.2614976

    11. [11]

      ZHANG Xiaoxia, SHEN Xuemin, and XIE Liangliang. Uplink achievable rate and power allocation in cooperative LTE-advanced networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2196–2207. doi: 10.1109/TVT.2015.2416714

    12. [12]

      FETEIHA M F and HASSANEIN H S. Enabling cooperative relaying VANET clouds over LTE-A networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1468–1479. doi: 10.1109/TVT.2014.2329880

    13. [13]

      KIM J B and LEE I H. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access[J]. IEEE Communications Letters, 2015, 19(11): 1949–1952. doi: 10.1109/LCOMM.2015.2472414

    14. [14]

      XU Min, JI Fei, WEN Miaowen, et al. Novel receiver design for the cooperative relaying system with non-orthogonal multiple access[J]. IEEE Communications Letters, 2016, 20(8): 1679–1682. doi: 10.1109/LCOMM.2016.2575011

    15. [15]

      KIM J B and LEE I H. Non-orthogonal multiple access in coordinated direct and relay transmission[J]. IEEE Communications Letters, 2015, 19(11): 2037–2040. doi: 10.1109/LCOMM.2015.2474856

    16. [16]

      MEN Jinjin, GE Jianhua, and ZHANG Chensi. Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-m fading channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 1200–1208. doi: 10.1109/TVT.2016.2555399

    17. [17]

      MEN Jinjin and GE Jianhua. Non-orthogonal multiple access for multiple-antenna relaying networks[J]. IEEE Communications Letters, 2015, 19(10): 1686–1689. doi: 10.1109/LCOMM.2015.2472006

    18. [18]

      WAN Dehuan, WEN Miaowen, YU Hua, et al. Non-orthogonal multiple access for dual-hop decode-and-forward relaying[C]. 2016 IEEE Global Communications Conference, Washington, DC, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7842026.

  • 图 1  系统模型

    图 2  所提NOMA与OMA在两种不同信道条件下的系统遍历容量对比

    图 3  性能对比与图2相同但信道条件不同

  • 加载中
图(3)
计量
  • PDF下载量:  51
  • 文章访问数:  685
  • HTML全文浏览量:  480
文章相关
  • 通讯作者:  刘云, lauwin007@yahoo.com
  • 收稿日期:  2018-08-29
  • 录用日期:  2019-01-30
  • 网络出版日期:  2019-03-19
  • 刊出日期:  2019-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章