-
Advanced Search

Citation: Shengjun ZHANG, Zhou ZHONG, Liang JIN, Kaizhi HUANG. Secret Key Agreement Based on Secure Polar Code[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1413-1419. doi: 10.11999/JEIT180896 shu

Secret Key Agreement Based on Secure Polar Code

  • Corresponding author: Liang JIN, liangjin@263.net
  • Received Date: 2018-09-18
    Accepted Date: 2019-02-25
    Available Online: 2019-06-01

Figures(6) / Tables(4)

  • Focusing on the problem of information leakage in secret key agreement, combining information reconciliation and privacy amplification, a method based on Secure Polar Code (SPC) is proposed, which builds the bridge from the condition of Quantized Bit Error Rate (QBER) to the requirement of Secret Key Outage Probability (SKOP). Firstly, QBER is modeled as the Transmitted Bit Error Rate (TBER) of Additional White Gaussian Noise (AWGN) channel, so the advantage of QBER is converted to the advantage of AWGN channel; Then, the TBER of each polarized sub-channel is calculated by Gaussian approximation, and the upper and lower bounds of decoded bit error rate are also derived. Finally, the SPC is constructed based on generic algorithm and SKOP threshold. Simulation results show that the proposed method satisfies the requirement of SKOP and achieves higher secret key agreement efficiency, compared with Low Density Parity Check (LDPC)-based method.
  • 加载中
    1. [1]

      ZOU Yulong, ZHU Jia, WANG Xianbin, et al. A survey on wireless security: Technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727–1765. doi: 10.1109/JPROC.2016.2558521

    2. [2]

      REZKI Z, ZORGUI M, ALOMAIR B, et al. Secret key agreement: Fundamental limits and practical challenges[J]. IEEE Wireless Communications, 2017, 24(3): 72–79. doi: 10.1109/MWC.2017.1500365WC

    3. [3]

      DIFFIE W and HELLMAN M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644–654. doi: 10.1109/TIT.1976.1055638

    4. [4]

      CASTELVECCHI D. Quantum computers ready to leap out of the lab in 2017[EB/OL]. http://www.nature.com/news/quantum-computers-ready-to-leap-out-of-the-lab-in-2017-1.21239, 2017.

    5. [5]

      ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718

    6. [6]

      CSISZAR I and KORNER J. Broadcast channels with confidential messages[J]. IEEE Transactions on Information Theory, 1978, 24(3): 339–348. doi: 10.1109/TIT.1978.1055892

    7. [7]

      AHLSWEDE R and CSISZAR I. Common randomness in information theory and cryptography. I. Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121–1132. doi: 10.1109/18.243431

    8. [8]

      MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484

    9. [9]

      MAURER U and WOLF S. Secret-key agreement over unauthenticated public channels. III. Privacy amplification[J]. IEEE Transactions on Information Theory, 2003, 49(4): 839–851. doi: 10.1109/TIT.2003.809559

    10. [10]

      ETESAMI J and HENKEL W. LDPC code construction for wireless physical-layer key reconciliation[C]. Proceedings of the 1st IEEE International Conference on Communications in China (ICCC), Beijing, China, 2012: 208–213. doi: 10.1109/ICCChina.2012.6356879.

    11. [11]

      PACHER C, GRABENWEGER P, MARTINEZ-MATEO J, et al. An information reconciliation protocol for secret-key agreement with small leakage[C]. Proceedings of 2015 IEEE International Symposium on Information Theory (ISIT), Hongkong, China, 2015: 730–734.

    12. [12]

      ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379

    13. [13]

      ARIKAN E. Systematic polar coding[J]. IEEE Communications Letters, 2011, 15(8): 860–862. doi: 10.1109/LCOMM.2011.061611.110862

    14. [14]

      KOYLUOGLU O O and EL GAMAL H. Polar coding for secure transmission and key agreement[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1472–1483. doi: 10.1109/TIFS.2012.2207382

    15. [15]

      KIM Y S, KIM J H, and KIM S H. A secure information transmission scheme with a secret key based on polar coding[J]. IEEE Communications Letters, 2014, 18(6): 937–940. doi: 10.1109/LCOMM.2014.2318306

    16. [16]

      CHOU R A, BLOCH M R, and ABBE E. Polar coding for secret-key generation[J]. IEEE Transactions on Information Theory, 2015, 61(11): 6213–6237. doi: 10.1109/TIT.2015.2471179

    17. [17]

      CACHIN C and MAURER U M. Linking information reconciliation and privacy amplification[J]. Journal of Cryptology, 1997, 10(2): 97–110. doi: 10.1007/s001459900023

    18. [18]

      DAI Jincheng, NIU Kai, SI Zhongwei, et al. Does Gaussian approximation work well for the long-length polar code construction?[J]. IEEE Access, 2017, 5: 7950–7963. doi: 10.1109/ACCESS.2017.2692241

    19. [19]

      SCHÜRCH C. A partial order for the synthesized channels of a polar code[C]. Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 2016: 220–224. doi: 10.1109/ISIT.2016.7541293.

    20. [20]

      VANGALA H, HONG Yi, and VITERBO E. Efficient algorithms for systematic polar encoding[J]. IEEE Communications Letters, 2016, 20(1): 17–20. doi: 10.1109/LCOMM.2015.2497220

    21. [21]

      Final Report of 3GPP TSG RAN WG1 #88bis v1.0.0[R]. MCC Support, Spokane, USA, 2017.

  • 加载中
    1. [1]

      Liang JINAolin CAIKaizhi HUANGZhou ZHONGYangming LOU . Secret Key Generation Method Based on Multi-stream Random Signal. Journal of Electronics and Information Technology, 2019, 41(6): 1405-1412. doi: 10.11999/JEIT181040

    2. [2]

      Jianhua PENGShuai ZHANGXiaoming XUKaizhi HUANGLiang JIN . A Noise Injection Scheme Resistant to Massive MIMO Eavesdropper in IoT. Journal of Electronics and Information Technology, 2019, 41(1): 67-73. doi: 10.11999/JEIT180342

    3. [3]

      Xinyu DAHaobo WANGZhangkai LUOHang HULei NIYu PAN . Dual-polarized Satellite Security Transmission Scheme Based on Double Layer Multi-parameter Weighted-type Fractional Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(8): 1974-1982. doi: 10.11999/JEIT181135

    4. [4]

      Qiong WANGYajie LUOSifang LI . Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check. Journal of Electronics and Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

    5. [5]

      Yicai HUANGSensen LIBowu BAOBin YU . Message Signature Scheme for ZigBee Network Security Positioning. Journal of Electronics and Information Technology, 2019, 41(3): 702-708. doi: 10.11999/JEIT180064

    6. [6]

      Xing ZHAOJianhua PENGWei YOU . A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190170

    7. [7]

      Jian ZHAOHaiying GAOBin HU . Analysis Method for Concrete Security of Attribute-based Encryption Based on Learning With Errors. Journal of Electronics and Information Technology, 2019, 41(8): 1779-1786. doi: 10.11999/JEIT180824

    8. [8]

      Yuejun ZHANGJiawei WANGZhao PANXiaowei ZHANGPengjun WANG . Hardware Security for Multi IPs Protection Based on Orthogonal Obfuscation. Journal of Electronics and Information Technology, 2019, 41(8): 1847-1854. doi: 10.11999/JEIT180898

    9. [9]

      Xinbo LIUBuhong WANGZhixian YANGHaiou SHEN . A Fragment-aware Secure Virtual Network Reconfiguration Method. Journal of Electronics and Information Technology, 2019, 41(4): 995-1001. doi: 10.11999/JEIT180474

    10. [10]

      Guosheng ZHAOHui ZHANGJian WANG . A Mobile Crowdsensing Data Security Delivery Model Based on Tangle Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190370

    11. [11]

      Xinsheng JIShuiling XUWenyan LIUQing TONGLingshu LI . A Security-oriented Dynamic and Heterogeneous Scheduling Method for Virtual Network Function. Journal of Electronics and Information Technology, 2019, 41(10): 2435-2441. doi: 10.11999/JEIT181130

    12. [12]

      Suzhen CAOXiaoli LANGXiangzhen LIUYulei ZHANGCaifen WANG . Improvement of a Provably Secure Mutual and Anonymous Heterogeneous Signcryption Scheme Between PKI and IBC. Journal of Electronics and Information Technology, 2019, 41(8): 1787-1792. doi: 10.11999/JEIT180982

    13. [13]

      Huanlin LIUZhenyu LINXin WANGYong CHENMin XIANGYue MA . A Diverse Virtual Optical Network Mapping Strategy Based on Security Awareness in Elastic Optical Networks. Journal of Electronics and Information Technology, 2019, 41(2): 424-432. doi: 10.11999/JEIT180335

    14. [14]

      Xiaodong YANGTingchun MAChunlin CHENJinli WANGCaifen WANG . Security Analysis and Improvement of Certificateless Aggregate Signature Scheme for Vehicular Ad Hoc Networks. Journal of Electronics and Information Technology, 2019, 41(5): 1265-1270. doi: 10.11999/JEIT180571

    15. [15]

      Guang KOUShuo WANGDa ZHANG . Recognition of Network Security Situation Elements Based on Depth Stack Encoder and Back Propagation Algorithm. Journal of Electronics and Information Technology, 2019, 41(9): 2187-2193. doi: 10.11999/JEIT181014

    16. [16]

      Yulei ZHANGXiangzhen LIUXiaoli LANGYongjie ZHANGCaifen WANG . Security Analysis and Improvements of Hybrid Group Signcryption Scheme Based on Heterogeneous Cryptosystem. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190129

    17. [17]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    18. [18]

      Caixia LIUXinxin HUShuxin LIUWei YOUYu ZHAO . Security Analysis of 5G Network EAP-AKA′ Protocol Based on Lowe’s Taxonomy. Journal of Electronics and Information Technology, 2019, 41(8): 1800-1807. doi: 10.11999/JEIT190063

    19. [19]

      Yulei ZHANGXiangzhen LIUXiaoli LANGYongjie ZHANGWenjuan CHENCaifen WANG . Multi-server Key Aggregation Searchable Encryption Scheme in Cloud Environment. Journal of Electronics and Information Technology, 2019, 41(3): 674-679. doi: 10.11999/JEIT180418

    20. [20]

      Min XIEQiya ZENG . Related-key Impossible Differential Cryptanalysis on Lightweight Block Cipher ESF. Journal of Electronics and Information Technology, 2019, 41(5): 1173-1179. doi: 10.11999/JEIT180576

Metrics
  • PDF Downloads(26)
  • Abstract views(191)
  • HTML views(150)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return