-
Advanced Search

Citation: Shengjun ZHANG, Zhou ZHONG, Liang JIN, Kaizhi HUANG. Secret Key Agreement Based on Secure Polar Code[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1413-1419. doi: 10.11999/JEIT180896 shu

Secret Key Agreement Based on Secure Polar Code

  • Corresponding author: Liang JIN, liangjin@263.net
  • Received Date: 2018-09-18
    Accepted Date: 2019-02-25
    Available Online: 2019-06-01

Figures(6) / Tables(4)

  • Focusing on the problem of information leakage in secret key agreement, combining information reconciliation and privacy amplification, a method based on Secure Polar Code (SPC) is proposed, which builds the bridge from the condition of Quantized Bit Error Rate (QBER) to the requirement of Secret Key Outage Probability (SKOP). Firstly, QBER is modeled as the Transmitted Bit Error Rate (TBER) of Additional White Gaussian Noise (AWGN) channel, so the advantage of QBER is converted to the advantage of AWGN channel; Then, the TBER of each polarized sub-channel is calculated by Gaussian approximation, and the upper and lower bounds of decoded bit error rate are also derived. Finally, the SPC is constructed based on generic algorithm and SKOP threshold. Simulation results show that the proposed method satisfies the requirement of SKOP and achieves higher secret key agreement efficiency, compared with Low Density Parity Check (LDPC)-based method.
  • 加载中
    1. [1]

      ZOU Yulong, ZHU Jia, WANG Xianbin, et al. A survey on wireless security: Technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727–1765. doi: 10.1109/JPROC.2016.2558521

    2. [2]

      REZKI Z, ZORGUI M, ALOMAIR B, et al. Secret key agreement: Fundamental limits and practical challenges[J]. IEEE Wireless Communications, 2017, 24(3): 72–79. doi: 10.1109/MWC.2017.1500365WC

    3. [3]

      DIFFIE W and HELLMAN M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644–654. doi: 10.1109/TIT.1976.1055638

    4. [4]

      CASTELVECCHI D. Quantum computers ready to leap out of the lab in 2017[EB/OL]. http://www.nature.com/news/quantum-computers-ready-to-leap-out-of-the-lab-in-2017-1.21239, 2017.

    5. [5]

      ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718

    6. [6]

      CSISZAR I and KORNER J. Broadcast channels with confidential messages[J]. IEEE Transactions on Information Theory, 1978, 24(3): 339–348. doi: 10.1109/TIT.1978.1055892

    7. [7]

      AHLSWEDE R and CSISZAR I. Common randomness in information theory and cryptography. I. Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121–1132. doi: 10.1109/18.243431

    8. [8]

      MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484

    9. [9]

      MAURER U and WOLF S. Secret-key agreement over unauthenticated public channels. III. Privacy amplification[J]. IEEE Transactions on Information Theory, 2003, 49(4): 839–851. doi: 10.1109/TIT.2003.809559

    10. [10]

      ETESAMI J and HENKEL W. LDPC code construction for wireless physical-layer key reconciliation[C]. Proceedings of the 1st IEEE International Conference on Communications in China (ICCC), Beijing, China, 2012: 208–213. doi: 10.1109/ICCChina.2012.6356879.

    11. [11]

      PACHER C, GRABENWEGER P, MARTINEZ-MATEO J, et al. An information reconciliation protocol for secret-key agreement with small leakage[C]. Proceedings of 2015 IEEE International Symposium on Information Theory (ISIT), Hongkong, China, 2015: 730–734.

    12. [12]

      ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379

    13. [13]

      ARIKAN E. Systematic polar coding[J]. IEEE Communications Letters, 2011, 15(8): 860–862. doi: 10.1109/LCOMM.2011.061611.110862

    14. [14]

      KOYLUOGLU O O and EL GAMAL H. Polar coding for secure transmission and key agreement[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1472–1483. doi: 10.1109/TIFS.2012.2207382

    15. [15]

      KIM Y S, KIM J H, and KIM S H. A secure information transmission scheme with a secret key based on polar coding[J]. IEEE Communications Letters, 2014, 18(6): 937–940. doi: 10.1109/LCOMM.2014.2318306

    16. [16]

      CHOU R A, BLOCH M R, and ABBE E. Polar coding for secret-key generation[J]. IEEE Transactions on Information Theory, 2015, 61(11): 6213–6237. doi: 10.1109/TIT.2015.2471179

    17. [17]

      CACHIN C and MAURER U M. Linking information reconciliation and privacy amplification[J]. Journal of Cryptology, 1997, 10(2): 97–110. doi: 10.1007/s001459900023

    18. [18]

      DAI Jincheng, NIU Kai, SI Zhongwei, et al. Does Gaussian approximation work well for the long-length polar code construction?[J]. IEEE Access, 2017, 5: 7950–7963. doi: 10.1109/ACCESS.2017.2692241

    19. [19]

      SCHÜRCH C. A partial order for the synthesized channels of a polar code[C]. Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 2016: 220–224. doi: 10.1109/ISIT.2016.7541293.

    20. [20]

      VANGALA H, HONG Yi, and VITERBO E. Efficient algorithms for systematic polar encoding[J]. IEEE Communications Letters, 2016, 20(1): 17–20. doi: 10.1109/LCOMM.2015.2497220

    21. [21]

      Final Report of 3GPP TSG RAN WG1 #88bis v1.0.0[R]. MCC Support, Spokane, USA, 2017.

  • 加载中
    1. [1]

      Xinyu DAHaobo WANGZhangkai LUOHang HULei NIYu PAN . Dual-polarization Satellite Security Transmission Scheme Based on Double Layer Multi-Parameter Weighted-type FRactional Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(8): 1973-1981. doi: 10.11999/JEIT181135

    2. [2]

      Qiong WANGYajie LUOSifang LI . Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check. Journal of Electronics and Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

    3. [3]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    4. [4]

      Yang ZHOUTianqi ZHANG . Blind Estimation of the Pseudo Noise Sequence and Information Sequence for Short Code Synchronous and Asynchronous DS-CDMA Signal. Journal of Electronics and Information Technology, 2019, 41(7): 1540-1547. doi: 10.11999/JEIT180812

    5. [5]

      Jinfu XUJin WUJunwei LITongzhou QUYongxing DONG . Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism. Journal of Electronics and Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775

    6. [6]

      Yan ZHANGJianhua CHENMeng TANG . Distributed LT Codes on Multiple Layers Networks. Journal of Electronics and Information Technology, 2019, 41(7): 1548-1554. doi: 10.11999/JEIT180804

    7. [7]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    8. [8]

      Kaihui TUZhihong HUANGZhengrong HOUHaigang YANG . Research on Efficient FPGA Bitstream Generation System Based on Mode Matching and Hierarchical Mapping. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190143

Metrics
  • PDF Downloads(20)
  • Abstract views(128)
  • HTML views(101)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return