高级搜索

短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术

汪海波 黄文华 巴涛 姜悦

引用本文: 汪海波, 黄文华, 巴涛, 姜悦. 短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术[J]. 电子与信息学报, doi: 10.11999/JEIT180912 shu
Citation:  Haibo WANG, Wenhua HUANG, Tao BA, Yue JIANG. Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT180912 shu

短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术

    作者简介: 汪海波: 男,1987年生,工程师,研究方向为高功率微波技术和雷达信号处理;
    黄文华: 男,1968年生,研究员,博士生导师,研究方向为高功率微波技术;
    姜悦: 女,1989年生,工程师,研究方向为高功率微波技术、特征提取与目标识别
    通讯作者: 汪海波,wanghaibo@nint.ac.cn
摘要: 短脉冲非相参雷达(NCSP)的辐射源输出微波脉冲持续时间短,针对于高速运动目标而言,其脉冲持续时间内的目标运动可忽略不计,对回波信号不需进行专门的脉冲内运动补偿。为了利用短脉冲非相参雷达信号进行逆合成孔径雷达成像,该文应用补偿相参处理的方法,去除辐射信号包络时间不确定性和初始相位的不确定性影响,在常规方法进行包络对齐和初相补偿后可利用距离-多普勒(RD)方法进行逆合成孔径雷达成像,仿真验证了补偿后信号成像的可行性。然而,短脉冲非相参雷达的载频随机抖动的因素会导致距离-多普勒成像结果在多普勒维度产生随机调制的旁瓣,影响成像的质量。利用稀疏恢复技术,在成像空间中对目标的散射中心进行稀疏重构,利用正交匹配追踪(OMP)算法和稀疏贝叶斯学习(SBL)算法进行成像,从而实现了抑制非相参因素引起的成像旁瓣,改进了成像质量,通过仿真验证了方法可行性。

English

    1. [1]

      胡银福, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4): 350–360. doi: 10.12000/JR16078
      HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350–360. doi: 10.12000/JR16078

    2. [2]

      钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2): 1–74. doi: 10.16540/j.cnki.cn11-2485/tn.2015.02.001
      QIAN Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1–74. doi: 10.16540/j.cnki.cn11-2485/tn.2015.02.001

    3. [3]

      XIAO Renzhen, ZHANG Zhiqiang, LIANG Tiezhu, et al. A relativistic backward wave oscillator for directly generating circularly polarized TE11 mode[J]. Physics of Plasmas, 2016, 23(3): 033118. doi: 10.1063/1.4944915

    4. [4]

      BLYAKHMAN A, CLUNIE D, HARRIS R, et al. Nanosecond Gigawatt radar: Indication of small targets moving among heavy clutters[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 61–64. doi: 10.1109/RADAR.2007.374191.

    5. [5]

      BLYAKHMAN A, CLUNIE D, MESIATS G, et al. Analysis of nanosecond gigawatt radar[M]. Hirshfield J L and Petelin M L. Quasi-Optical Control of Intense Microwave Transmission. Netherlands: Springer, 2005: 283–296. doi: 10.1007/1-4020-3638-8_21.

    6. [6]

      AUBRY A, DE MAIO A, CAROTENUTO V, et al. Radar phase noise modeling and effects-Part I: MTI Filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 698–711. doi: 10.1109/TAES.2015.140549

    7. [7]

      AUBRY A, CAROTENUTO V, DE MAIO A, et al. Radar phase noise modeling and effects-Part II: doppler processors and sidelobe blankers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 712–725. doi: 10.1109/TAES.2015.140723

    8. [8]

      RYSKIN N M, TITOV V N, and UMANTSIVA O V. Phase locking and mode switching in a backward-wave oscillator with reflections[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1270–1275. doi: 10.1109/TPS.2016.2517002

    9. [9]

      SONG Wei, SUN Jun, SHAO Hao, et al. Inducing phase locking of multiple oscillators beyond the Adler’s condition[J]. Journal of Applied Physics, 2012, 111(2): 023302. doi: 10.1063/1.3671537

    10. [10]

      SONG Wei, ZHANG Xiaowei, CHEN Changhua, et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 494–497. doi: 10.1109/TED.2012.2230400

    11. [11]

      XIAO Renzhen, SONG Zhimin, DENG Yuqun, et al. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal[J]. Physics of Plasmas, 2014, 21(9): 093108. doi: 10.1063/1.4895598

    12. [12]

      汪海波, 黄文华, 姜悦. 短脉冲非相参雷达的补偿相参处理方法研究[J]. 电子与信息学报, 2018, 40(8): 1823–1828. doi: 10.11999/JEIT171147
      WANG Haibo, HUANG Wenhua, and JIANG Yue. Compensative coherent processing algorithm for short pulse non-coherent radar[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1823–1828. doi: 10.11999/JEIT171147

    13. [13]

      PRICKETT M J. Principles of inverse synthetic aperture radar (ISAR)[J]. IEEE EASCON Record, 1980, 14(6): 340–345.

    14. [14]

      ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630–4651. doi: 10.1109/TGRS.2011.2151865

    15. [15]

      KHARDIKOV V V and PROSVIRNIN S L. The Algorithm for ISAR imaging of fast moving target using radar with binary phase–coded waveforms[C]. The 5th International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, Ukraine, 2005: 339–342. doi: 10.1109/ICATT.2005.1496974.

    16. [16]

      白雪茹. 空天目标逆合成孔径雷达成像新方法研究[D]. [博士论文], 西安电子科技大学, 2011.
      BAI Xueru. Study on new techniques for ISAR imaging of aerospace targets[D]. [Ph.D. dissertation], Xidian University, 2011.

    17. [17]

      RAO Wei, LI Gang, and WANG Xiqin. Parametric sparse representation method for ISAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910–919. doi: 10.1109/TAES.2014.120535

    18. [18]

      吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1146.2012.01597
      WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics &Information Technology, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1146.2012.01597

    19. [19]

      ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. doi: 10.1109/TAP.2011.2173130

    20. [20]

      李少东, 杨军, 陈文峰, 等. 基于压缩感知理论的雷达成像技术与应用研究进展[J]. 电子与信息学报, 2016, 38(2): 495–508. doi: 10.11999/JEIT150874
      LI Shaodong, YANG Jun, CHEN Wenfeng, et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics &Information Technology, 2016, 38(2): 495–508. doi: 10.11999/JEIT150874

    21. [21]

      HE Xingyu, TONG Ningning, HU Xiaowei, et al. High-resolution ISAR imaging based on two-dimensional group sparse recovery[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 82–86. doi: 10.1049/iet-rsn.2017.0161

    22. [22]

      LIU Zhen, CHEN Xin, and SUI Jinping. High resolution wideband imaging of fast rotating targets based on random PRI radar[J]. Progress in Electromagnetic Research M, 2018, 63: 59–70. doi: 10.2528/PIERM17081005

    23. [23]

      TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108

    24. [24]

      吕明久, 李少东, 杨军, 等. 基于随机调频步进信号的高分辨ISAR成像方法[J]. 电子与信息学报, 2016, 38(12): 3129–3136. doi: 10.11999/JEIT160177
      LÜ Mingjiu, LI Shaodong, YANG Jun, et al. High resolution ISAR imaging method based on random chirp frequency-stepped signal[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3129–3136. doi: 10.11999/JEIT160177

    25. [25]

      LIU Hongchao, JIU Bo, LIU Hongwei, et al. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005–5013. doi: 10.1109/TGRS.2013.2286402

    26. [26]

      JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345

    27. [27]

      BABACAN S D, MOLINA R, and KATSAGGELOS A K. Fast Bayesian compressive sensing using Laplace priors[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 2873–2876. doi: 10.1109/ICASSP.2009.4960223.

    28. [28]

      苏伍各, 王宏强, 邓彬, 等. 基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究[J]. 电子与信息学报, 2015, 37(1): 1–8. doi: 10.11999/JEIT140315
      SU Wuge, WANG Hongqiang, DENG Bin, et al. The Interpulse Frequency Agility ISAR imaging technology based on sparse Bayesian method[J]. Journal of Electronics &Information Technology, 2015, 37(1): 1–8. doi: 10.11999/JEIT140315

    29. [29]

      吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工程出版社, 2008: 51–80.
      WU Shunjun and MEI Xiaochun. Radar Signal Processing and Information Processing Technology[M]. Beijing: Publishing House of Electronics Industry, 2008: 51–80.

    30. [30]

      POTTER L C, CHIANG Daming, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641

    31. [31]

      O'DONNELL A N, WILSON J L, KOLTENUK D M, et al. Compressed sensing for radar signature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2631–2639. doi: 10.1109/TAES.2013.6621841

    32. [32]

      李峰, 郭毅. 压缩感知浅析[M]. 北京: 科学出版社, 2015: 45–79.
      LI Feng and GUO Yi. Introduce to Compress Sensing[M]. Beijing: Science Press, 2015: 45–79.

    1. [1]

      孟智超, 卢景月, 谢朋飞, 张磊, 王虹现. 无人机载多普勒分集前视合成孔径雷达成像方法. 电子与信息学报,

    2. [2]

      孙光才, 王裕旗, 高昭昭, 江帆, 邢孟道, 保铮. 一种基于短合成孔径的双星干涉精确定位方法. 电子与信息学报,

    3. [3]

      李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展. 电子与信息学报,

    4. [4]

      王洪雁, 于若男. 基于稀疏和低秩恢复的稳健DOA估计方法. 电子与信息学报,

    5. [5]

      李瑞, 张群, 苏令华, 梁佳, 罗迎. 基于稀疏贝叶斯学习的双基雷达关联成像. 电子与信息学报,

    6. [6]

      胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法. 电子与信息学报,

    7. [7]

      赵勇胜, 胡德秀, 刘智鑫, 赵拥军, 赵闯. 基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法. 电子与信息学报,

    8. [8]

      张爱丽, 刘浩, 武林, 牛立杰, 张成, 陈雪, 吴季. G矩阵修正法在一维综合孔径微波辐射计成像中的应用. 电子与信息学报,

    9. [9]

      杨磊, 李埔丞, 李慧娟, 方澄. 稳健高效通用SAR稀疏特征增强算法. 电子与信息学报,

    10. [10]

      胡健, 罗迎, 张群, 康乐, 何其芳. 空间旋转目标窄带雷达干涉式三维成像与微动特征提取. 电子与信息学报,

    11. [11]

      王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法. 电子与信息学报,

    12. [12]

      杨利超, 邢孟道, 孙光才, 王安乐, 盛佳恋. 一种微波光子雷达ISAR成像新方法. 电子与信息学报,

    13. [13]

      景小荣, 陶红宝. 一种稀疏码本多址接入码本优化设计方法. 电子与信息学报,

    14. [14]

      张颖, 姚雨丰. 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法. 电子与信息学报,

    15. [15]

      郭英, 东润泽, 张坤峰, 眭萍, 杨银松. 基于稀疏贝叶斯学习的多跳频信号DOA估计方法. 电子与信息学报,

    16. [16]

      王洪雁, 邱贺磊, 郑佳, 裴炳南. 光照变化下基于逆向稀疏表示的视觉跟踪方法. 电子与信息学报,

    17. [17]

      崔维嘉, 张鹏, 巴斌. 基于循环匹配追踪的稀疏重构时延估计算法. 电子与信息学报,

    18. [18]

      李如春, 程云霄, 覃亚丽. 稀疏信号结构性噪声干扰下的感知矩阵优化. 电子与信息学报,

    19. [19]

      张小恒, 李勇明, 王品, 曾孝平, 颜芳, 张艳玲, 承欧梅. 基于语音卷积稀疏迁移学习和并行优选的帕金森病分类算法研究. 电子与信息学报,

    20. [20]

      王剑书, 樊养余, 杜瑞, 吕国云. 适用于二维阵列的无格稀疏波达方向估计算法. 电子与信息学报,

  • 图 1  短脉冲非相参雷达系统结构

    图 2  3种信号对运动目标回波的对比

    图 3  成像几何模型

    图 4  点目标模型的设定

    图 5  频率抖动示意

    图 6  RD成像结果

    图 7  稀疏恢复成像结果

  • 加载中
图(7)
计量
  • PDF下载量:  18
  • 文章访问数:  341
  • HTML全文浏览量:  203
文章相关
  • 通讯作者:  汪海波, wanghaibo@nint.ac.cn
  • 收稿日期:  2018-09-21
  • 录用日期:  2019-01-12
  • 网络出版日期:  2019-05-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章