高级搜索

基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度

刘焕淋 方菲 陈勇 向敏 马跃

引用本文: 刘焕淋, 方菲, 陈勇, 向敏, 马跃. 基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度[J]. 电子与信息学报, 2019, 41(11): 2571-2577. doi: 10.11999/JEIT180937 shu
Citation:  Huanlin LIU, Fei FANG, Yong CHEN, Min XIANG, Yue MA. Energy-efficient Scheduling Algorithm for All Optical IP Multicast Based on Colorless, Directionless and Contentionless-Flexible Reconfigurable Optical Add/Drop Multiplexer Node[J]. Journal of Electronics and Information Technology, 2019, 41(11): 2571-2577. doi: 10.11999/JEIT180937 shu

基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度

    作者简介: 刘焕淋: 女,1970年生,教授,研究方向为光通信及网络;
    方菲: 女,1995年生,硕士生,研究方向为光网络能效调度;
    陈勇: 男,1963年生,教授,研究方向为光传感检测;
    向敏: 男,1974年生,教授,研究方向为智能电网;
    马跃: 男,1977年生,高级工程师,研究方向为电力通信
    通讯作者: 刘焕淋,liuhl2@sina.com
  • 基金项目: 国家电网总公司科技项目(52010118000Q)

摘要: 为了提高无色无向无冲突灵活的可重构光分插复用器(CDC-F ROADM)节点的弹性光网络IP组播频谱-能耗效率,该文提出一种全光组播能效调度算法(AMEESA)。在算法路由阶段,考虑能耗和链路频谱资源使用情况设计链路代价函数,构建最小代价光树算法组播光树。在频谱分配阶段,设计基于高效光谱分辨率(HSR)光树中间节点频谱转换方法,选择节能频谱转换方案为组播光树分配频谱块资源。仿真分析表明,所提算法能有效提升网络能效,降低IP组播带宽阻塞率。

English

    1. [1]

      鲍宁海, 刘翔, 张治中, 等. WDM节能光网络中的抗毁保护算法研究[J]. 重庆邮电大学学报: 自然科学版, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2012.03.002
      BAO Ninghai, LIU Xiang, ZHANG Zhizhong, et al. Survivable protection algorithm in WDM energy-efficient optical network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2012.03.002

    2. [2]

      刘焕淋, 熊翠连, 陈勇. 频谱效率优先的任播路由冲突感知的弹性光网络资源重配置[J]. 电子与信息学报, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093
      LIU Huanlin, XIONG Cuilian, and CHEN Yong. Collision-aware reconfiguration resource based on spectrum efficiency first for anycast routing in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093

    3. [3]

      熊余, 刘川菠, 孙鹏. 考虑业务服务质量的光线路终端节能算法[J]. 重庆邮电大学学报: 自然科学版, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011
      XIONG Yu, LIU Chuanbo, and SUN Peng. Energy saving algorithm for optical line terminal considering quality of service[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011

    4. [4]

      HAMZA H S. Convert-and-deliver: Convert-and-Deliver: A scalable multicast optical cross-connect with reduced power splitting fan-out[J]. The Journal of Supercomputing, 2012, 62(3): 1189–1212. doi: 10.1007/s11227-011-0565-9

    5. [5]

      PASCAR L, KARUBI R, FRENKEL B, et al. Port-reconfigurable, wavelength-selective switch array for colorless/directionless /contentionless optical add/drop multiplexing[C]. The International Conference on Photonics in Switching, Florence, Italy, 2015: 16–18,

    6. [6]

      ZONG Liangjia, ZHAO Han, YAN Yunfei, et al. Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC[J]. Journal of Optical Communications and Networking, 2016, 8(7): A141–A151. doi: 10.1364/JOCN.8.00A141

    7. [7]

      PATEL A N, JI P N, JUE J P, et al. Multicast traffic grooming in flexible optical WDM networks[C]. SPIE Conference on Optical Metro Networks and Short-Haul Systems V, San Francisco, USA, 2013: 864605.

    8. [8]

      YANG Haining, ROBERTSON B, WILKINSON P, et al. Low-cost CDC ROADM architecture based on stacked wavelength selective switches[J]. Journal of Optical Communications and Networking, 2017, 9(5): 375–384. doi: 10.1364/JOCN.9.000375

    9. [9]

      SYGLETOS S, FABBRI S, FERREIRA F, et al. All-optical add-drop multiplexer for OFDM signals[C]. The International Conference on Transparent Optical Networks, Budapest, Hungary, 2015: 1–4.

    10. [10]

      LIN H and ZHUANG Yuanxi. An algorithm for dynamic multicast traffic grooming in light-trail optical WDM mesh networks[C]. The International Conference on Computing, Networking and Communications, Maui, USA, 2018: 134–138.

    11. [11]

      LIU Huanlin, YIN Yarui, and CHEN Yong. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks[J]. Optical Fiber Technology, 2017, 36: 374–381. doi: 10.1016/j.yofte.2017.05.014

    12. [12]

      PAPANIKOLAOU P, SOUMPLIS P, MANOUSAKIS K, et al. Minimizing energy and cost in fixed-grid and flex-grid networks[J]. Journal of Optical Communications and Networking, 2015, 7(4): 337–351. doi: 10.1364/JOCN.7.000337

    13. [13]

      RUDNICK R, TOLMACHEV A, SINEFELD D, et al. Sub-GHz resolution photonic spectral processor and its system applications[J]. Journal of Lightwave Technology, 2017, 35(11): 2218–2226. doi: 10.1109/JLT.2016.2647710

    14. [14]

      TANAKA T, INUI T, KADOHATA A, et al. Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation[J]. Journal of Optical Communications and Networking, 2016, 8(7): A180–A190. doi: 10.1364/JOCN.8.00A180

    15. [15]

      VIZCAÍNO J L, SOTO P, YE Y B, et al. Differentiated quality of protection: an energy-and spectral-efficient resilience scheme for survivable static and dynamic optical transport networks with fixed-and flexible-grid[J]. Optical Switching and Networking, 2015, 19: 78–96. doi: 10.1016/j.osn.2015.03.006

    1. [1]

      刘焕淋, 徐一帆, 陈勇. 基于频谱感知的业务分割-合并的弹性光网络资源分配策略. 电子与信息学报, 2016, 38(4): 892-898.

    2. [2]

      陈彬, 鲍东晖, 苏恭超, 代明军, 王晖, 林晓辉. 基于路径的整数线性规划方法在阻塞IP over WDM网络中能耗优化的应用. 电子与信息学报, 2015, 37(3): 715-720.

    3. [3]

      刘焕淋, 方菲, 黄俊, 陈勇, 向敏, 马跃. 面向业务的弹性光网络光路损伤感知能效路由策略. 电子与信息学报, 2019, 41(5): 1202-1209.

    4. [4]

      郝晓辰, 刘金硕, 姚宁, 解力霞, 王立元. 无线传感器网络基于容量和传输能耗的功率与信道联合博弈算法. 电子与信息学报, 2018, 40(7): 1715-1722.

    5. [5]

      刘焕淋, 张明佳, 陈勇, 王欣. 频谱可用性和保护带宽共享度感知的弹性光网络生存性多路径策略. 电子与信息学报, 2017, 39(10): 2472-2478.

    6. [6]

      刘焕淋, 熊翠连, 陈勇. 频谱效率优先的任播路由冲突感知的弹性光网络资源重配置. 电子与信息学报, 2017, 39(7): 1697-1703.

    7. [7]

      刘焕淋, 林振宇, 王欣, 陈勇, 向敏, 马跃. 弹性光网络中基于安全性感知的差异化虚拟光网络的映射策略. 电子与信息学报, 2019, 41(2): 424-432.

    8. [8]

      刘焕淋, 易鹏飞, 张明佳, 陈勇. 最小故障风险损失的弹性光网络多链路故障概率保护策略. 电子与信息学报, 2017, 39(8): 1819-1825.

    9. [9]

      刘焕淋, 杜理想, 陈勇, 胡会霞. 串扰感知的空分弹性光网络频谱转换器稀疏配置和资源分配方法. 电子与信息学报, 2020, 42(0): 1-8.

    10. [10]

      廖盛斌, 程文青, 刘威, 杨宗凯, 丁毅. 基于效用的无线传感器网络能量分配优化策略. 电子与信息学报, 2008, 30(9): 2271-2275.

    11. [11]

      秋小强, 杨海钢, 周发标, 谢元禄. 长互连链延时功耗建模与基于混合粒子群算法的优化. 电子与信息学报, 2011, 33(6): 1481-1486.

    12. [12]

      李鹏, 王建新, 曹建农. 无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案. 电子与信息学报, 2015, 37(7): 1586-1590.

    13. [13]

      贾鹏, 李健, 顾畹仪. 基于遗传算法的全光组播路由. 电子与信息学报, 2007, 29(4): 911-914.

    14. [14]

      胡莹, 黄永明, 俞菲, 杨绿溪. 基于能效优化的用户调度与资源分配算法. 电子与信息学报, 2012, 34(8): 1950-1955.

    15. [15]

      戴精科, 彭来献, 张邦宁. 一种支持单播与组播混合业务的高速Crossbar调度算法. 电子与信息学报, 2009, 31(10): 2299-2304.

    16. [16]

      周婷, 赵有健, 王瑞生. 保证100%吞吐率的两级组播交换结构. 电子与信息学报, 2012, 34(1): 82-88.

    17. [17]

      龚水清, 陈靖, 王崴. 面向节点异构的能耗感知虚拟网络映射算法. 电子与信息学报, 2015, 37(8): 2021-2027.

    18. [18]

      严少虎, 卓永宁, 吴诗其, 郭伟. IEEE802.11 DCF发送过程的能耗分析. 电子与信息学报, 2004, 26(7): 1107-1113.

    19. [19]

      张博, 汪斌强, 袁博. 一种自路由群组交换结构的无缓存能耗优化模型. 电子与信息学报, 2012, 34(7): 1690-1696.

    20. [20]

      李云, 王俊伟, 赵为粮, 刘期烈. 基于基站密度和业务负载的异构蜂窝网络能效优化. 电子与信息学报, 2017, 39(4): 854-859.

  • 图 1  CDC-F ROADM光交换组播节点结构

    图 2  基于HSR的全光上下路和频谱转换模块

    图 3  不同负载条件下NSFNET网络中的带宽阻塞率

    图 4  不同负载条件下USNET网络中的带宽阻塞率

    图 5  不同负载条件下NSFNET网络中的能效

    图 6  不同负载条件下USNET网络中的能效

    表 1  不同调制格式下单频隙的传输速率、能耗和最大距离

    调制格式传输速率(Gb/s)能耗(W)最大距离(km)
    BPSK12.5112.3744000
    QPSK25.0133.4162000
    8QAM37.5154.4571000
    16QAM50.0175.498500
    32QAM62.5196.539250
    下载: 导出CSV

    表 2  AMEESA算法

     输入:光网络拓扑$G\left( {{\text{V}}, {\text{E}}, {\text{S}}} \right)$,节点集${\text{V}} = \left\{ {{v_i}|i = 1, 2, ·\!·\!· , \left| {\text{V}} \right|} \right\}$,节点端口数N,链路集${\text{E}} = \left\{ {{e_{ij}}|i, j \in {\text{V}}, i \ne j} \right\}$,链路频隙集${\text{S}} = \left\{ {{s_i}|i =}\right.$    $\left.{ 1, 2, ·\!·\!· , |{\text{S}}|} \right\}$,组播集${\text{R}} = \left\{ {{R_k}|k = 1, 2, ·\!·\!· , \left| {\text{R}} \right|} \right\}$,其中组播请求Rk=(sk, Dk, wk), sk为第k个业务源节点,Dk为第k个业务目的节点集    合,wk代表第k个业务所需频谱带宽,设变量k=1;
     输出:各组播的传输光树和路径上频隙索引值起止编号,网络能耗PT
     (1) 判断集合R是否空?如果是,则转到步骤(12),如果不是,处理第k个组播请求Rk=(sk, Dk, wk);
     (2) 初始化组播Rk光树集合Tk=$\varnothing $,使用式(8)更新网络拓扑中每条链路的代价;
     (3) 在Dk中任取一个目的节点dj,使用Dijkstra算法为组播计算一条从源节点skdj的最小代价路径Pk, j;并将Pk, j加入组播光树Tk中,更新  业务Rk目的节点集合Dk=Dkdj
     (4) 判断目的节点集合Dk是否为$\emptyset $,如果是,转步骤(5);否则,返回至步骤(3);
     (5) 根据组播光树Tk大小,在距离物理损伤约束下基于HSR为组播选择最佳的调制等级,并计算组播Rk所需频隙数n,确定频隙索引起止编号;
     (6) 统计光树Tk中所有链路的空闲频谱资源,判断是否有频谱块满足组播的带宽需求,若有,转步骤(7);否则,跳至步骤(8);
     (7) 为组播Rk建立光树连接,使用FF方法为组播Rk分配频谱,计算网络总能耗PT,转步骤(11);
     (8) 根据光树中所有链路的空闲频谱情况,判断组播是否可通过HSR在光树中间节点频谱转换满足带宽分配需求,若可以,则转步骤(9);
      否则,阻塞该组播请求,k =k+1,返回步骤(1),处理下一个组播;
     (9) 将链路上满足组播请求的频谱资源从小到大排序,如果频谱块大小相同,再按照频谱块的起始索引值大小由小到大排序;确定频谱不一
      致的光树中间节点进行频谱转换,选择频谱起始索引值小的频谱块分配给组播光树,并计算网络能耗PT,选择使得网络能耗最小的中间
      节点频谱转换方案;
     (10) 若经中间节点频谱转换的组播频谱分配成功,转步骤(11);否则,阻塞组播,k =k+1,转步骤(1);
     (11) 组播Rk路由和频谱分配成功,记录光树Tk和各链路上频隙分配的起止频隙编号,网络能耗PT
     (12) AMEESA算法结束,输出各成功传输组播的路由光树、频谱分配和网络能耗。
    下载: 导出CSV
  • 加载中
图(6)表(2)
计量
  • PDF下载量:  26
  • 文章访问数:  975
  • HTML全文浏览量:  588
文章相关
  • 通讯作者:  刘焕淋, liuhl2@sina.com
  • 收稿日期:  2018-10-08
  • 录用日期:  2019-03-12
  • 网络出版日期:  2019-05-20
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章