高级搜索

基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度

刘焕淋 方菲 陈勇 向敏 马跃

引用本文: 刘焕淋, 方菲, 陈勇, 向敏, 马跃. 基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度[J]. 电子与信息学报, doi: 10.11999/JEIT180937 shu
Citation:  Huanlin LIU, Fei FANG, Yong CHEN, Min XIANG, Yue MA. Energy-efficient Scheduling Algorithm for All Optical IP Multicast Based on Colorless, Directionless and Contentionless-Flexible Reconfigurable Optical Add/Drop Multiplexer Node[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT180937 shu

基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度

    作者简介: 刘焕淋: 女,1970年生,教授,研究方向为光通信及网络;
    方菲: 女,1995年生,硕士生,研究方向为光网络能效调度;
    陈勇: 男,1963年生,教授,研究方向为光传感检测;
    向敏: 男,1974年生,教授,研究方向为智能电网;
    马跃: 男,1977年生,高级工程师,研究方向为电力通信
    通讯作者: 刘焕淋,liuhl2@sina.com
  • 基金项目: 国家电网总公司科技项目(52010118000Q)

摘要: 为了提高无色无向无冲突灵活的可重构光分插复用器(CDC-F ROADM)节点的弹性光网络IP组播频谱-能耗效率,该文提出一种全光组播能效调度算法(AMEESA)。在算法路由阶段,考虑能耗和链路频谱资源使用情况设计链路代价函数,构建最小代价光树算法组播光树。在频谱分配阶段,设计基于高效光谱分辨率(HSR)光树中间节点频谱转换方法,选择节能频谱转换方案为组播光树分配频谱块资源。仿真分析表明,所提算法能有效提升网络能效,降低IP组播带宽阻塞率。

English

    1. [1]

      鲍宁海, 刘翔, 张治中, 等. WDM节能光网络中的抗毁保护算法研究[J]. 重庆邮电大学学报: 自然科学版, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2012.03.002
      BAO Ninghai, LIU Xiang, ZHANG Zhizhong, et al. Survivable protection algorithm in WDM energy-efficient optical network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2012.03.002

    2. [2]

      刘焕淋, 熊翠连, 陈勇. 频谱效率优先的任播路由冲突感知的弹性光网络资源重配置[J]. 电子与信息学报, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093
      LIU Huanlin, XIONG Cuilian, and CHEN Yong. Collision-aware reconfiguration resource based on spectrum efficiency first for anycast routing in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093

    3. [3]

      熊余, 刘川菠, 孙鹏. 考虑业务服务质量的光线路终端节能算法[J]. 重庆邮电大学学报: 自然科学版, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011
      XIONG Yu, LIU Chuanbo, and SUN Peng. Energy saving algorithm for optical line terminal considering quality of service[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011

    4. [4]

      HAMZA H S. Convert-and-deliver: Convert-and-Deliver: a scalable multicast optical cross-connect with reduced power splitting fan-out[J]. The Journal of Supercomputing, 2012, 62(3): 1189–1212. doi: 10.1007/s11227-011-0565-9

    5. [5]

      PASCAR L, KARUBI R, FRENKEL B, et al. Port-reconfigurable, wavelength-selective switch array for colorless/directionless /contentionless optical add/drop multiplexing[C]. The International Conference on Photonics in Switching, Florence, Italy, 2015: 16–18,

    6. [6]

      ZONG Liangjia, ZHAO Han, YAN Yunfei, et al. Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC[J]. Journal of Optical Communications and Networking, 2016, 8(7): A141–A151. doi: 10.1364/JOCN.8.00A141

    7. [7]

      PATEL A N, JI P N, JUE J P, et al. Multicast traffic grooming in flexible optical WDM networks[C]. SPIE Conference on Optical Metro Networks and Short-Haul Systems V, San Francisco, USA, 2013: 864605.

    8. [8]

      YANG Haining, ROBERTSON B, WILKINSON P, et al. Low-cost CDC ROADM architecture based on stacked wavelength selective switches[J]. Journal of Optical Communications and Networking, 2017, 9(5): 375–384. doi: 10.1364/JOCN.9.000375

    9. [9]

      SYGLETOS S, FABBRI S, FERREIRA F, et al. All-optical add-drop multiplexer for OFDM signals[C]. The International Conference on Transparent Optical Networks, Budapest, Hungary, 2015: 1–4.

    10. [10]

      LIN H and ZHUANG Yuanxi. An algorithm for dynamic multicast traffic grooming in light-trail optical WDM mesh networks[C]. The International Conference on Computing, Networking and Communications, Maui, USA, 2018: 134–138.

    11. [11]

      LIU Huanlin, YIN Yarui, and CHEN Yong. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks[J]. Optical Fiber Technology, 2017, 36: 374–381. doi: 10.1016/j.yofte.2017.05.014

    12. [12]

      PAPANIKOLAOU P, SOUMPLIS P, MANOUSAKIS K, et al. Minimizing energy and cost in fixed-grid and flex-grid networks[J]. Journal of Optical Communications and Networking, 2015, 7(4): 337–351. doi: 10.1364/JOCN.7.000337

    13. [13]

      RUDNICK R, TOLMACHEV A, SINEFELD D, et al. Sub-GHz resolution photonic spectral processor and its system applications[J]. Journal of Lightwave Technology, 2017, 35(11): 2218–2226. doi: 10.1109/JLT.2016.2647710

    14. [14]

      TANAKA T, INUI T, KADOHATA A, et al. Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation[J]. Journal of Optical Communications and Networking, 2016, 8(7): A180–A190. doi: 10.1364/JOCN.8.00A180

    15. [15]

      VIZCAÍNO J L, SOTO P, YE Y B, et al. Differentiated quality of protection: an energy-and spectral-efficient resilience scheme for survivable static and dynamic optical transport networks with fixed-and flexible-grid[J]. Optical Switching and Networking, 2015, 19: 78–96. doi: 10.1016/j.osn.2015.03.006

    1. [1]

      刘焕淋, 方菲, 黄俊, 陈勇, 向敏, 马跃. 面向业务的弹性光网络光路损伤感知能效路由策略. 电子与信息学报,

    2. [2]

      刘焕淋, 林振宇, 王欣, 陈勇, 向敏, 马跃. 弹性光网络中基于安全性感知的差异化虚拟光网络的映射策略. 电子与信息学报,

    3. [3]

      张达敏, 张绘娟, 闫威, 陈忠云, 辛梓芸. 异构网络中基于能效优化的D2D资源分配机制. 电子与信息学报,

    4. [4]

      孙远, 李春国, 黄永明, 杨绿溪. 基于带缓存的云接入网络最优能效设计. 电子与信息学报,

    5. [5]

      张瑞, 占友, 钱权. 一种新的基于虚拟队列的无线多播网络编码调度策略. 电子与信息学报,

    6. [6]

      代美玲, 刘周斌, 郭少勇, 邵苏杰, 邱雪松. 基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制. 电子与信息学报,

    7. [7]

      王汝言, 徐宁宁, 吴大鹏. 能耗和时延感知的虚拟化云无线接入网络资源分配机制. 电子与信息学报,

    8. [8]

      熊余, 杨娅娅, 张振振, 蒋婧. 软件定义时分波分复用无源光网络中基于带宽预测的资源分配策略. 电子与信息学报,

    9. [9]

      唐伦, 杨恒, 马润琳, 陈前斌. 基于5G接入网络的多优先级虚拟网络功能迁移开销与网络能耗联合优化算法. 电子与信息学报,

    10. [10]

      戴紫彬, 曲彤洲. 基于预配置和配置重用的粗粒度动态可重构系统任务调度技术. 电子与信息学报,

    11. [11]

      唐敏, 齐栋, 刘成城, 赵拥军. 基于多级阻塞的稳健相干自适应波束形成. 电子与信息学报,

    12. [12]

      何灏, 易卫东, 陈永锐, 王喆. 基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化. 电子与信息学报,

    13. [13]

      陈莹, 陈湟康. 基于多模态生成对抗网络和三元组损失的说话人识别. 电子与信息学报,

    14. [14]

      杨善超, 田康生, 刘仁争, 郑玉军. 基于价值优化的相控阵雷达任务调度算法. 电子与信息学报,

    15. [15]

      赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建. 电子与信息学报,

    16. [16]

      崔苗, 喻鑫, 李学易, 张广驰, 刘怡俊. 多用户多载波无线携能通信系统的上下行联合资源分配. 电子与信息学报,

    17. [17]

      江明明, 郭宇燕, 余磊, 宋万干, 魏仕民. 有效的标准模型下格上基于身份的代理重加密. 电子与信息学报,

    18. [18]

      刘毅, 吴炯, 杨普, 南海涵, 张海林. 面向OFDM的同时同频全双工双向高谱效中继方案. 电子与信息学报,

    19. [19]

      李丹, 兰巨龙, 王鹏, 胡宇翔. 基于最长有效功能序列的服务功能链部署算法. 电子与信息学报,

    20. [20]

      胡炎, 单子力, 高峰. 一种面向多星多分辨率的SAR图像舰船候选区域提取方法. 电子与信息学报,

  • 图 1  CDC-F ROADM光交换组播节点结构

    图 2  基于HSR的全光上下路和频谱转换模块

    图 3  不同负载条件下NSFNET网络中的带宽阻塞率

    图 4  不同负载条件下USNET网络中的带宽阻塞率

    图 5  不同负载条件下NSFNET网络中的能效

    图 6  不同负载条件下USNET网络中的能效

    表 1  不同调制格式下单频隙的传输速率、能耗和最大距离

    调制格式传输速率(Gb/s)能耗(W)最大距离(km)
    BPSK12.5112.3744000
    QPSK25.0133.4162000
    8QAM37.5154.4571000
    16QAM50.0175.498500
    32QAM62.5196.539250
    下载: 导出CSV

    表 2  AMEESA算法

     输入:光网络拓扑$G\left( {{{V}}, {{E}}, {{S}}} \right)$,节点集${{V}} = \left\{ {{v_i}|i = 1, 2, ·\!·\!· , \left| {{V}} \right|} \right\}$,节点端口数N,链路集${{E}} = \left\{ {{e_{ij}}|i, j \in {{V}}, i \ne j} \right\}$,链路频隙集${{S}} = \left\{ {{s_i}|i =}\right.$    $\left.{ 1, 2, ·\!·\!· , |{{S}}|} \right\}$,组播集${{R}} = \left\{ {{R_k}|k = 1, 2, ·\!·\!· , \left| {{R}} \right|} \right\}$,其中组播请求Rk=(sk, Dk, wk),sk为第k个业务源节点,Dk为第k个业务目的节点集    合,wk代表第k个业务所需频谱带宽,设变量k=1;
     输出:各组播的传输光树和路径上频隙索引值起止编号,网络能耗PT
     (1) 判断集合R是否空?如果是,则转到步骤12,如果不是,处理第k个组播请求Rk=(sk, Dk, wk);
     (2) 初始化组播Rk光树集合Tk=$\varnothing $,使用式(8)更新网络拓扑中每条链路的代价;
     (3) 在Dk中任取一个目的节点dj,使用Dijkstra算法为组播计算一条从源节点skdj的最小代价路径Pk, j;并将Pk, j加入组播光树Tk中,更新  业务Rk目的节点集合Dk=Dkdj
     (4) 判断目的节点集合Dk是否为$\emptyset $,如果是,转步骤5;否则,返回至步骤3;
     (5) 根据组播光树Tk大小,在距离物理损伤约束下基于HSR为组播选择最佳的调制等级,并计算组播Rk所需频隙数n,确定频隙索引起止编号;
     (6) 统计光树Tk中所有链路的空闲频谱资源,判断是否有频谱块满足组播的带宽需求,若有,转步骤7;否则,跳至步骤8;
     (7) 为组播Rk建立光树连接,使用FF方法为组播Rk分配频谱,计算网络总能耗PT,转步骤11;
     (8) 根据光树中所有链路的空闲频谱情况,判断组播是否可通过HSR在光树中间节点频谱转换满足带宽分配需求,若可以,则转步骤9;否  则,阻塞该组播请求,k =k+1,返回步骤1,处理下一个组播;
     (9) 将链路上满足组播请求的频谱资源从小到大排序,如果频谱块大小相同,再按照频谱块的起始索引值大小由小到大排序;确定频谱不一
      致的光树中间节点进行频谱转换,选择频谱起始索引值小的频谱块分配给组播光树,并计算网络能耗PT,选择使得网络能耗最小的中间
      节点频谱转换方案;
     (10) 若经中间节点频谱转换的组播频谱分配成功,转步骤11;否则,阻塞组播,k =k+1,转步骤1;
     (11) 组播Rk路由和频谱分配成功,记录光树Tk和各链路上频隙分配的起止频隙编号,网络能耗PT
     (12) AMEESA算法结束,输出各成功传输组播的路由光树、频谱分配和网络能耗。
    下载: 导出CSV
  • 加载中
图(6)表(2)
计量
  • PDF下载量:  11
  • 文章访问数:  392
  • HTML全文浏览量:  258
文章相关
  • 通讯作者:  刘焕淋, liuhl2@sina.com
  • 收稿日期:  2018-10-08
  • 录用日期:  2019-03-12
  • 网络出版日期:  2019-05-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章