电台类别 | 分形特征量 | ||
Kolmogorov熵 | Lyapunov指数 | 相关维数 | |
电台1 | 0.5667 | 0.0312 | 3.2658 |
电台2 | 0.4610 | 0.1372 | 4.9878 |
电台3 | 0.9925 | 0.2207 | 1.4193 |
电台4 | 0.2919 | 0.1632 | 2.7587 |

Citation: Ping SUI, Ying GUO, Hongguang LI, Yuzhou WANG. Frequency-hopping Transmitter Classification Based on Chaotic Attractor Reconstruction and Low-rank Clustering[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT180947

基于混沌吸引子重构和Low-rank聚类的跳频信号电台分选
-
关键词:
- 跳频电台
- / 暂态信号
- / 混沌吸引子
- / Low-rank聚类
English
Frequency-hopping Transmitter Classification Based on Chaotic Attractor Reconstruction and Low-rank Clustering
-
-
[1]
齐昶, 王斌, 丁海军. 基于KHM聚类算法的跳频信号分选[J]. 声学技术, 2011, 30(6): 547–551. doi: 10.3969/j.issn1000-3630.2011.06.017
QI Chang, WANG Bin, and DING Haijun. Identification of frequency hopping signals based on clustering[J]. Technical Acoustics, 2011, 30(6): 547–551. doi: 10.3969/j.issn1000-3630.2011.06.017 -
[2]
姚瑶, 赵知劲, 尚俊娜. 一种跳频信号网台分选方法[J]. 杭州电子科技大学学报, 2009, 29(1): 33–36. doi: 10.3969/j.issn.1001-9146.2009.01.009
YAO Yao, ZHAO Zhijin, and SHANG Junna. A method for FH signal network-station sorting[J]. Journal of Hangzhou Dianzi University, 2009, 29(1): 33–36. doi: 10.3969/j.issn.1001-9146.2009.01.009 -
[3]
于欣永, 郭英, 张坤峰, 等. 基于盲源分离的多跳频信号网台分选算法[J]. 信号处理, 2017, 33(8): 1082–1089. doi: 10.16798/j.issn.1003-0530.2017.08.008
YU Xinyong, GUO Ying, ZHANG Kunfeng, et al. A network sorting algorithm based on blind source separation of multi-FH signal[J]. Journal of Signal Processing, 2017, 33(8): 1082–1089. doi: 10.16798/j.issn.1003-0530.2017.08.008 -
[4]
ELLIS K J and SERINKEN N. Characteristics of radio transmitter fingerprints[J]. Radio Science, 2016, 36(4): 585–597. doi: 10.1029/2000rs002345
-
[5]
SUI Ping, GUO Ying, ZHANG Kunfeng, et al. Frequency-hopping transmitter fingerprint feature classification based on kernel collaborative representation classifier[J]. Wireless Communications and Mobile Computing, 2017, 2017: 9403590. doi: 10.1155/2017/9403590
-
[6]
顾晓辉, 刘永强, 杨绍普, 等. 基于混沌吸引子特征量的滚动轴承故障诊断[J]. 石家庄铁道大学学报: 自然科学版, 2015, 28(1): 91–95. doi: 10.13319/j.cnki.sjztddxxbzrb.2015.01.19
GU Xiaohui, LIU Yongqiang, YANG Shaopu, et al. Fault diagnosis of rolling bearing based on characteristic auantities of chaotic attractor[J]. Journal of Shijiazhuang Tiedao University:Natural Science Edition, 2015, 28(1): 91–95. doi: 10.13319/j.cnki.sjztddxxbzrb.2015.01.19 -
[7]
相征, 张太镒, 孙建成. 基于混沌吸引子的快衰落信道预测算法[J]. 西安电子科技大学学报: 自然科学版, 2006, 33(1): 145–149. doi: 10.3969/j.issn.1001-2400.2006.01.034
XIANG Zheng, ZHANG Taiyi, and SUN Jiancheng. Prediction algorithm for fast fading channels based on the chaotic attractor[J]. Journal of Xidian University, 2006, 33(1): 145–149. doi: 10.3969/j.issn.1001-2400.2006.01.034 -
[8]
王皓石. 图像的混沌吸引子研究[D]. [硕士论文], 吉林大学, 2015.
WANG Haoshi. Study on the chaotic attractor of image[D]. [Master dissertation], Jinlin University, 2015. -
[9]
TAKENS F. Detecting strange attractors in turbulence[M]. RAND D and YOUNG L S. Lecture Notes in Mathematics. Berlin, Springer-Verlag, 1981: 366–381.
-
[10]
KUGIUMTZIS D. State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length[J]. Physica D: Nonlinear Phenomena, 1996, 95(1): 13–28. doi: 10.1016/0167-2789(96)00054-1
-
[11]
SUN L, KINSNER W, and SERINKEN N. Characterization and feature extraction of transient signals using multifractal measures[C]. Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Alberta, Canada, 1999: 781–785.
-
[12]
SHAW D and KINSNER W. Multifractal modelling of radio transmitter transients for classification[C]. IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, Winnipeg, Manitoba, Canada, 2002: 306–312.
-
[13]
FRASER A M and SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134–1140. doi: 10.1103/physreva.33.1134
-
[14]
KENNEL M B, BROWN R, and ABARBANEL H D. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403–3411. doi: 10.1103/physreva.45.3403
-
[15]
LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184. doi: 10.1109/tpami.2012.88
-
[16]
YANG Junfeng and ZHANG Yin. Alternating direction algorithms for L1-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011, 33(1): 250–278. doi: 10.1137/090777761
-
[17]
ZHANG Haixian, ZHANG Yi, and XI Peng. fLRR: Fast Low-rank representation using Frobenius-norm[J]. Electronics Letters, 2014, 50(13): 936–938. doi: 10.1049/el.2014.1396
-
[1]
-
表 1 暂态信号混沌吸引子的分形特征量
-