高级搜索

BI与MHO结合的无人战斗机自主空战机动决策

黄长强 王乐

引用本文: 黄长强, 王乐. BI与MHO结合的无人战斗机自主空战机动决策[J]. 电子与信息学报, doi: 10.11999/JEIT181011 shu
Citation:  Changqiang HUANG, Le WANG. Maneuvering Decision for Autonomous Air Combat of UCAV Based on BI and MHO[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181011 shu

BI与MHO结合的无人战斗机自主空战机动决策

    作者简介: 黄长强: 男,1963年生,教授,博士生导师,研究方向为无人机总体设计与技术;
    王乐: 男,1994年生,硕士生,研究方向为无人机武器系统设计
    通讯作者: 王乐,scqxwl0818@163.com
  • 基金项目: 国家自然科学基金(61601505),航空科学基金(20155196022),陕西省自然科学基金(2016JQ6050)

摘要: 为了使无人战斗机(UCAV)在自主空战中达到更高的自主水平,该文建立了一个自主机动决策系统。首先采用模糊逻辑建立了机动决策因素函数,然后设计了敌机机动预测模型;并将空战博弈看作一个马尔可夫过程,利用贝叶斯推理(BI)理论有效地计算了空战态势;最后,采用滚动时域优化(MHO)方法对整个空战机动决策过程进行建模,并对近距空战进行了仿真研究。结果表明所设计的机动决策方法能有效提高UCAV态势优势,具有明显优越性。

English

    1. [1]

      KARIMI J and POURTAKDOUST S H. Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm[J]. Aerospace Science and Technology, 2013, 26(1): 60–71. doi: 10.1016/j.ast.2012.02.014

    2. [2]

      FRAZZOLI E, DAHLEH M A, and FERON E. Real-time motion planning for agile autonomous vehicles[C]. Proceedings of 2001 American Control Conference, Arlington, USA, 2001: 43–49.

    3. [3]

      AUSTIN F, CARBONE G, FALCO M, et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1143–1149. doi: 10.2514/3.20590

    4. [4]

      VIRTANEN K, RAIVIO T, and HÄMÄLÄINEN R P. Decision theoretical approach to pilot simulation[J]. Journal of Aircraft, 1999, 36(4): 632–641. doi: 10.2514/2.2505

    5. [5]

      ZHONG Lin, TONG Ming’an, ZHONG Wei, et al. Sequential maneuvering decisions based on multi-stage influence diagram in air combat[J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 551–555. doi: 10.1016/S1004-4132(07)60128-5

    6. [6]

      MA Yaofei, MA Xiaole, and SONG Xiao. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014, 2014: 183401. doi: 10.1155/2014/183401

    7. [7]

      黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447–2452. doi: 10.11999/JEIT180068
      HUANG Changqiang, ZHAO Kexin, HAN Bangjie, et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2447–2452. doi: 10.11999/JEIT180068

    8. [8]

      PONTANI M and CONWAY B A. Numerical solution of the three-dimensional orbital pursuit-evasion game[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 474–487. doi: 10.2514/1.37962

    9. [9]

      ZHANG Yu, CHEN Jing, and SHEN Lincheng. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4): 1038–1056. doi: 10.1016/j.cja.2013.04.040

    10. [10]

      PRÉVOST C G, THÉRIAULT O, DESBIENS A, et al. Receding horizon model-based predictive control for dynamic target tracking: A comparative study[C]. Proceedings of AIAA Guidance, Navigation, and Control Conference, Chicago, 2013.

    11. [11]

      ERNEST N, COHEN K, KIVELEVITCH E, et al. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles[J]. Unmanned Systems, 2015, 3(3): 185–204. doi: 10.1142/S2301385015500120

    12. [12]

      VIERTL R and SUNANTA O. Fuzzy Bayesian inference[J]. METRON, 2013, 71(3): 207–216. doi: 10.1007/s40300-013-0026-8

    13. [13]

      DONG Yiqun and AI Jianliang. Trial input method and own-aircraft state prediction in autonomous air combat[J]. Journal of Aircraft, 2012, 49(3): 947–954. doi: 10.2514/1.C031671

    14. [14]

      WANG Dong, ZU Wei, CHANG Hongxing, et al. Research on automatic decision making of UAV based on plan goal graph[C]. Proceedings of IEEE International Conference on Robotics and Biomimetics, Qingdao, 2016: 1245–1249.

    15. [15]

      WANG Tian, QIN Ruoxi, CHEN Yang, et al. A reinforcement learning approach for UAV target searching and tracking[J]. Multimedia Tools and Applications, 2019, 78(4): 4347–4364. doi: 10.1007/s11042-018-5739-5

    16. [16]

      傅莉, 谢怀福, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994–1999.
      FU Li, XIE Huaifu, MENG Guanglei, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994–1999.

    17. [17]

      MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641–1654. doi: 10.2514/1.46815

    18. [18]

      ALZUGARAY I, TEIXEIRA L, and CHLI M. Short-term UAV path-planning with monocular-inertial SLAM in the loop[C]. Proceedings of 2017 IEEE International Conference on Robotics and Automation, Singapore, 2017: 2739–2746.

    19. [19]

      YU Xiang, ZHOU Xiaobin, and ZHANG Youmin. Collision-free trajectory generation for UAVs using Markov decision process[C]. Proceedings of 2017 International Conference on Unmanned Aircraft Systems, Miami, USA, 2017: 56–61.

    20. [20]

      WU Zhenglong, GUAN Zhenyu, YANG Chengwei, et al. Terminal guidance law for UAV based on receding horizon control strategy[J]. Complexity, 2017, 2017: 2750172. doi: 10.1155/2017/2750172

    21. [21]

      罗元强, 孟光磊. 基于马尔科夫网络的无人机机动决策方法研究[J]. 系统仿真学报, 2017, 29(S1): 106–112. doi: 10.16182/j.issn1004731x.joss.2017S1015
      LUO Yuanqiang and MENG Guanglei. Research on UAV maneuver decision-making method based on Markov network[J]. Journal of System Simulation, 2017, 29(S1): 106–112. doi: 10.16182/j.issn1004731x.joss.2017S1015

    22. [22]

      龚松波, 张维昊, 马红亮, 等. 基于目标态势评估的无人机系统自主决策技术研究[J]. 飞机设计, 2017, 37(3): 7–9. doi: 10.19555/j.cnki.1673-4599.2017.03.002
      GONG Songbo, ZHANG Weihao, MA Hongliang, et al. The research UAVS autonomous decision-making technology based on target situation assessment[J]. Aircraft Design, 2017, 37(3): 7–9. doi: 10.19555/j.cnki.1673-4599.2017.03.002

    23. [23]

      任天助, 周锐, 李浩. 一种基于情感智能的无人机自主决策方法[J]. 电光与控制, 2017, 24(3): 11–15, 19. doi: 10.3969/j.issn.1671-637X.2017.03.003
      REN Tianzhu, ZHOU Rui, and LI Hao. An emotional intelligence based autonomous decision-making method for UAVs[J]. Electronics Optics &Control, 2017, 24(3): 11–15, 19. doi: 10.3969/j.issn.1671-637X.2017.03.003

    24. [24]

      张彬超, 寇雅楠, 邬蒙, 等. 基于深度置信网络的近距空战态势评估[J]. 北京航空航天大学学报, 2017, 43(7): 1450–1459. doi: 10.13700/j.bh.1001-5965.2016.0956
      ZHANG Binchao, KOU Yanan, WU Meng, et al. Close-range air combat situation assessment using deep belief network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1450–1459. doi: 10.13700/j.bh.1001-5965.2016.0956

    1. [1]

      刘坤, 吴建新, 甄杰, 王彤. 基于阵列天线和稀疏贝叶斯学习的室内定位方法. 电子与信息学报,

    2. [2]

      董道广, 芮国胜, 田文飚. 时域流信号的多任务稀疏贝叶斯动态重构方法研究. 电子与信息学报,

    3. [3]

      陈华, 习伟, 范丽敏, 焦志鹏, 冯婧怡. 密码产品的侧信道分析与评估. 电子与信息学报,

    4. [4]

      高云龙, 王志豪, 潘金艳, 罗斯哲, 王德鑫. 基于自适应松弛的鲁棒模糊C均值聚类算法. 电子与信息学报,

    5. [5]

      李根, 马彦恒, 侯建强, 徐公国. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法. 电子与信息学报,

    6. [6]

      夏晓峰, 向宏, 肖震宇, 蔡挺. 基于国产密码算法的数控网络的双层安全防护模型研究及安全评估. 电子与信息学报,

    7. [7]

      柳娟, 谢文彬, 汪改英, 汤敏丽. 基于DNA和限制性核酸内切酶的基本逻辑门设计. 电子与信息学报,

    8. [8]

      王璐慧, 王越, 钱梦瑶, 董亚非. 基于氧化石墨烯与金属离子的逻辑模型设计与可控性验证. 电子与信息学报,

    9. [9]

      孙军伟, 李智, 王延峰. 基于DNA链置换的三级联组合分子逻辑电路设计. 电子与信息学报,

    10. [10]

      李伟, 高嘉浩, 杜怡然, 陈韬. 一种密码专用可编程逻辑阵列的分组密码能效模型及其映射算法. 电子与信息学报,

  • 图 1  空战态势关系

    图 2  五个基本机动方向

    图 3  空战机动决策滚动控制过程

    图 4  对抗仿真结果

    图 5  对抗仿真结果

    表 1  UCAV与敌机对抗仿真初始状

    x(m)y(m)z(m)$v$(m/s)$\gamma $(°)$\chi $(°)
    UCAV10001000500020000
    敌机10001000050002000–180
    下载: 导出CSV

    表 2  UCAV与敌机对抗仿真初始状态

    x(m)y(m)z(m)$v$(m/s)$\gamma $(°)$\chi $(°)
    UCAV10001000500020000
    敌机100010000500020000
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  14
  • 文章访问数:  619
  • HTML全文浏览量:  376
文章相关
  • 通讯作者:  王乐, scqxwl0818@163.com
  • 收稿日期:  2018-11-05
  • 录用日期:  2019-03-19
  • 网络出版日期:  2019-12-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章