-
Advanced Search

Citation: Liang JIN, Aolin CAI, Kaizhi HUANG, Zhou ZHONG, Yangming LOU. Secret Key Generation Method Based on Multi-stream Random Signal[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1405-1412. doi: 10.11999/JEIT181040 shu

Secret Key Generation Method Based on Multi-stream Random Signal

  • Corresponding author: Aolin CAI, alcai@stu.xidian.edu.cn
  • Received Date: 2018-11-14
    Accepted Date: 2019-03-07
    Available Online: 2019-06-01

Figures(8)

  • The secret key generation method based on random signal may leak part of the common randomness information and reduce the achievable secret key rate when legal transmitter transmits random signal. In response to this problem, the secret key generation method based on multi-stream random signal is proposed. Firstly, the transmitter uses the channel reciprocity and uplink pilot to estimate the downlink channel, then the transmitter transmits mutually independent signal on every antenna. The eavesdropper is difficult to estimate all the random signals. It is difficult to estimate all the random signals for the eavesdropper, so the overlapping signal received by every antenna is difficult to be obtained by the eavesdropper. However, the legal transmitter is able to calculate the signal received by legal receiver by using the downlink channel estimated and the signal transmitted. So, the overlapping signal on every legal antenna can be used to extract secret key as common randomness. Also, the achievable secret key rate expression and the mutual information expression of common randomness are derived, and the relationship between them and the secret key security is analyzed. At last, the effectiveness of this method is verified by the simulation. The simulation results show that this method can reduce the common randomness observed by the eavesdropper to raise the achievable secret key rate and secret key security.
  • 加载中
    1. [1]

      LIU Yiliang, CHEN H H, and WANG Liangmin. Physical layer security for next generation wireless networks: Theories, technologies, and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 347–376. doi: 10.1109/COMST.2016.2598968

    2. [2]

      YANG Enhui and WU Xinwen. Information-theoretically secure key generation and management[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 1529–1533.

    3. [3]

      MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484

    4. [4]

      ZHU Xiaojun, XU Fengyuan, NOVAK E, et al. Using wireless link dynamics to extract a secret key in vehicular scenarios[J]. IEEE Transactions on Mobile Computing, 2017, 16(7): 2065–2078. doi: 10.1109/TMC.2016.2557784

    5. [5]

      HASSANA A A, STARKB W E, HERSHEYC J E, et al. Cryptographic key agreement for mobile radio[J]. Digital Signal Processing, 1996, 6(4): 207–212. doi: 10.1006/dspr.1996.0023

    6. [6]

      KITAURA A, SUMI T, TACHIBANA K, et al. A Scheme of private key agreement based on delay profiles in uwb systems[C]. 2006 IEEE Sarnoff Symposium, Princeton, USA, 2006: 1–6.

    7. [7]

      MADISEH M G, NEVILLE S W, and MCGUIRE M L. Applying beamforming to address temporal correlation in wireless channel characterization-based secret key generation[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(4): 1278–1287. doi: 10.1109/TIFS.2012.2195176

    8. [8]

      HUANG Pengfei and WANG Xudong. Fast secret key generation in static wireless networks: A virtual channel approach[C]. 2013 Proceedings IEEE INFOCOM, Turin, Italy, 2013: 2292–2300.

    9. [9]

      CHEN Dajiang, QIN Zhen, MAO Xufei, et al. SmokeGrenade: An efficient key generation protocol with artificial interference[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1731–1745. doi: 10.1109/TIFS.2013.2278834

    10. [10]

      GOLLAKOTA S and KATABI D. Physical layer wireless security made fast and channel independent[C]. 2011 Proceedings IEEE INFOCOM, Shanghai, China, 2011: 1125–1133.

    11. [11]

      LI Guyue, HU Aiqun, ZHANG Junqing, et al. Security analysis of a novel artificial randomness approach for fast key generation[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.

    12. [12]

      LOU Yangming, JIN Liang, ZHONG Zhou, et al. Secret key generation scheme based on MIMO received signal spaces[J]. Scientia Sinica Informationis, 2017, 47(3): 362–373. doi: 10.1360/N112016-00001

    13. [13]

      ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718

    14. [14]

      COVER T and THOMAS J. Elements of information theory[M]. Boston: John Wiley & Sons, 2012: 33–34.

    15. [15]

      PASOLINI G and DARDARI D. Secret key generation in correlated multi-dimensional Gaussian channels[C]. 2014 IEEE International Conference on Communications, Sydney, Australia, 2014: 2171–2177.

    16. [16]

      YE Chunxuan, REZNIK A, and SHAH Y. Extracting secrecy from jointly Gaussian random variables[C]. 2006 IEEE International Symposium on Information Theory, Seattle, USA, 2006: 2593–2597.

    17. [17]

      ROE G. Quantizing for minimum distortion (Corresp.)[J]. IEEE Transactions on Information Theory, 1964, 10(4): 384–385. doi: 10.1109/TIT.1964.1053693

    18. [18]

      ZHAN Furui, YAO Nianmin, GAO Zhenguo, et al. Efficient key generation leveraging wireless channel reciprocity for MANETs[J]. Journal of Network and Computer Applications, 2018, 103: 18–28. doi: 10.1016/j.jnca.2017.11.014

    19. [19]

      WONG C W, WONG T F, and SHEA J M. Secret-Sharing LDPC codes for the BPSK-constrained Gaussian wiretap channel[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 551–564. doi: 10.1109/TIFS.2011.2139208

    20. [20]

      ZHANG Shengjun, JIN Liang, LOU Yangming, et al. Secret key generation based on two-way randomness for TDD-SISO system[J]. China Communications, 2018, 15(7): 202–216. doi: 10.1109/CC.2018.8424614

    21. [21]

      BENNETT C H, BRASSARD G, CREPEAU C, et al. Generalized privacy amplification[J]. IEEE Transactions on Information Theory, 1995, 41(6): 1915–1923. doi: 10.1109/18.476316

    22. [22]

      ZENG X and DURRANI T S. Estimation of mutual information using copula density function[J]. Electronics Letters, 2011, 47(8): 493–494. doi: 10.1049/el.2011.0778

  • 加载中
    1. [1]

      Shengjun ZHANGZhou ZHONGLiang JINKaizhi HUANG . Secret Key Agreement Based on Secure Polar Code. Journal of Electronics and Information Technology, 2019, 41(6): 1413-1419. doi: 10.11999/JEIT180896

    2. [2]

      Jianhua PENGShuai ZHANGXiaoming XUKaizhi HUANGLiang JIN . A Noise Injection Scheme Resistant to Massive MIMO Eavesdropper in IoT. Journal of Electronics and Information Technology, 2019, 41(1): 67-73. doi: 10.11999/JEIT180342

    3. [3]

      Yulei ZHANGXiangzhen LIUXiaoli LANGYongjie ZHANGWenjuan CHENCaifen WANG . Multi-server Key Aggregation Searchable Encryption Scheme in Cloud Environment. Journal of Electronics and Information Technology, 2019, 41(3): 674-679. doi: 10.11999/JEIT180418

    4. [4]

      Min XIEQiya ZENG . Related-key Impossible Differential Cryptanalysis on Lightweight Block Cipher ESF. Journal of Electronics and Information Technology, 2019, 41(5): 1173-1179. doi: 10.11999/JEIT180576

    5. [5]

      Kaihui TUZhihong HUANGZhengrong HOUHaigang YANG . Research on Efficient FPGA Bitstream Generation System Based on Mode Matching and Hierarchical Mapping. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190143

    6. [6]

      Huilan LUOFei LUYuan YAN . Action Recognition Based on Multi-model Voting with Cross Layer Fusion. Journal of Electronics and Information Technology, 2019, 41(3): 649-655. doi: 10.11999/JEIT180373

    7. [7]

      Ying CHENHuangkang CHEN . Speaker Recognition Based on Multimodal GenerativeAdversarial Nets with Triplet-loss. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190154

    8. [8]

      Wei FENGYongxin XUHao LIUXiaorong XUYingbiao YAO . A Fast Convergent Cross-layer Resource Optimization Allocation Algorithm in Wireless Multi-hop Networks. Journal of Electronics and Information Technology, 2019, 41(5): 1217-1224. doi: 10.11999/JEIT180581

    9. [9]

      Guangkai LIUHoude QUANHuixian SUNPeizhang CUIKuo CHIShaolin YAO . Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio. Journal of Electronics and Information Technology, 2019, 41(10): 2342-2349. doi: 10.11999/JEIT190157

    10. [10]

      Yuejun ZHANGJiawei WANGZhao PANXiaowei ZHANGPengjun WANG . Hardware Security for Multi IPs Protection Based on Orthogonal Obfuscation. Journal of Electronics and Information Technology, 2019, 41(8): 1847-1854. doi: 10.11999/JEIT180898

    11. [11]

      Xinyu DAHaobo WANGZhangkai LUOHang HULei NIYu PAN . Dual-polarized Satellite Security Transmission Scheme Based on Double Layer Multi-parameter Weighted-type Fractional Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(8): 1974-1982. doi: 10.11999/JEIT181135

    12. [12]

      Jianwei LIChangwen QUShujuan PENGYuan JIANG . Ship Detection in SAR images Based on Generative Adversarial Network and Online Hard Examples Mining. Journal of Electronics and Information Technology, 2019, 41(1): 143-149. doi: 10.11999/JEIT180050

    13. [13]

      Yaguan QIANHongbo LUShouling JIWujie ZHOUShuhui WUBensheng YUNXiangxing TAOJingsheng LEI . Adversarial Example Generation Based on Particle Swarm Optimization. Journal of Electronics and Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777

    14. [14]

      Ying GUORunze DONGKunfeng ZHANGPing SUIYinsong YANG . Direction of Arrival Estimation for Multiple Frequency Hopping Signals Based on Sparse Bayesian Learning. Journal of Electronics and Information Technology, 2019, 41(3): 516-522. doi: 10.11999/JEIT180435

    15. [15]

      Yingkun HUANGWeidong JINPeng GEBing LI . Radar Emitter Signal Identification Based on Multi-scale Information Entropy. Journal of Electronics and Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535

    16. [16]

      Qiang DUKehao ZHANGLi KEChenyang WANG . Research on Synchronous Excitation and Detection Method for Synthetic Multi-frequency Magnetic Induction Signals. Journal of Electronics and Information Technology, 2019, 41(9): 2108-2114. doi: 10.11999/JEIT181083

    17. [17]

      Xia FENGLing TANGMin LU . Research on Shift Generation of Foreign Airlines Service Personnel Based on Tabu Search Algorithm. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181196

    18. [18]

      Yiming GUOHua PENG . Single Channel Blind Separation Performance Bound of Non-cooperative Received Paired Carrier Multiple Access Mixed Signal. Journal of Electronics and Information Technology, 2019, 41(1): 240-247. doi: 10.11999/JEIT180226

    19. [19]

      Xiaoyan DUJiang QIAOPeipei WEI . Real-time Correction Model for Zenith Tropospheric Delay Applied to the Chinese Region. Journal of Electronics and Information Technology, 2019, 41(1): 156-164. doi: 10.11999/JEIT180353

    20. [20]

      Jinfu XUJin WUJunwei LITongzhou QUYongxing DONG . Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism. Journal of Electronics and Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775

Metrics
  • PDF Downloads(46)
  • Abstract views(331)
  • HTML views(249)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return