-
Advanced Search

Citation: Liang JIN, Aolin CAI, Kaizhi HUANG, Zhou ZHONG, Yangming LOU. Secret Key Generation Method Based on Multi-stream Random Signal[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1405-1412. doi: 10.11999/JEIT181040 shu

Secret Key Generation Method Based on Multi-stream Random Signal

  • Corresponding author: Aolin CAI, alcai@stu.xidian.edu.cn
  • Received Date: 2018-11-14
    Accepted Date: 2019-03-07
    Available Online: 2019-06-01

Figures(8)

  • The secret key generation method based on random signal may leak part of the common randomness information and reduce the achievable secret key rate when legal transmitter transmits random signal. In response to this problem, the secret key generation method based on multi-stream random signal is proposed. Firstly, the transmitter uses the channel reciprocity and uplink pilot to estimate the downlink channel, then the transmitter transmits mutually independent signal on every antenna. The eavesdropper is difficult to estimate all the random signals. It is difficult to estimate all the random signals for the eavesdropper, so the overlapping signal received by every antenna is difficult to be obtained by the eavesdropper. However, the legal transmitter is able to calculate the signal received by legal receiver by using the downlink channel estimated and the signal transmitted. So, the overlapping signal on every legal antenna can be used to extract secret key as common randomness. Also, the achievable secret key rate expression and the mutual information expression of common randomness are derived, and the relationship between them and the secret key security is analyzed. At last, the effectiveness of this method is verified by the simulation. The simulation results show that this method can reduce the common randomness observed by the eavesdropper to raise the achievable secret key rate and secret key security.
  • 加载中
    1. [1]

      LIU Yiliang, CHEN H H, and WANG Liangmin. Physical layer security for next generation wireless networks: Theories, technologies, and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 347–376. doi: 10.1109/COMST.2016.2598968

    2. [2]

      YANG Enhui and WU Xinwen. Information-theoretically secure key generation and management[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 1529–1533.

    3. [3]

      MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484

    4. [4]

      ZHU Xiaojun, XU Fengyuan, NOVAK E, et al. Using wireless link dynamics to extract a secret key in vehicular scenarios[J]. IEEE Transactions on Mobile Computing, 2017, 16(7): 2065–2078. doi: 10.1109/TMC.2016.2557784

    5. [5]

      HASSANA A A, STARKB W E, HERSHEYC J E, et al. Cryptographic key agreement for mobile radio[J]. Digital Signal Processing, 1996, 6(4): 207–212. doi: 10.1006/dspr.1996.0023

    6. [6]

      KITAURA A, SUMI T, TACHIBANA K, et al. A Scheme of private key agreement based on delay profiles in uwb systems[C]. 2006 IEEE Sarnoff Symposium, Princeton, USA, 2006: 1–6.

    7. [7]

      MADISEH M G, NEVILLE S W, and MCGUIRE M L. Applying beamforming to address temporal correlation in wireless channel characterization-based secret key generation[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(4): 1278–1287. doi: 10.1109/TIFS.2012.2195176

    8. [8]

      HUANG Pengfei and WANG Xudong. Fast secret key generation in static wireless networks: A virtual channel approach[C]. 2013 Proceedings IEEE INFOCOM, Turin, Italy, 2013: 2292–2300.

    9. [9]

      CHEN Dajiang, QIN Zhen, MAO Xufei, et al. SmokeGrenade: An efficient key generation protocol with artificial interference[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1731–1745. doi: 10.1109/TIFS.2013.2278834

    10. [10]

      GOLLAKOTA S and KATABI D. Physical layer wireless security made fast and channel independent[C]. 2011 Proceedings IEEE INFOCOM, Shanghai, China, 2011: 1125–1133.

    11. [11]

      LI Guyue, HU Aiqun, ZHANG Junqing, et al. Security analysis of a novel artificial randomness approach for fast key generation[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.

    12. [12]

      LOU Yangming, JIN Liang, ZHONG Zhou, et al. Secret key generation scheme based on MIMO received signal spaces[J]. Scientia Sinica Informationis, 2017, 47(3): 362–373. doi: 10.1360/N112016-00001

    13. [13]

      ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718

    14. [14]

      COVER T and THOMAS J. Elements of information theory[M]. Boston: John Wiley & Sons, 2012: 33–34.

    15. [15]

      PASOLINI G and DARDARI D. Secret key generation in correlated multi-dimensional Gaussian channels[C]. 2014 IEEE International Conference on Communications, Sydney, Australia, 2014: 2171–2177.

    16. [16]

      YE Chunxuan, REZNIK A, and SHAH Y. Extracting secrecy from jointly Gaussian random variables[C]. 2006 IEEE International Symposium on Information Theory, Seattle, USA, 2006: 2593–2597.

    17. [17]

      ROE G. Quantizing for minimum distortion (Corresp.)[J]. IEEE Transactions on Information Theory, 1964, 10(4): 384–385. doi: 10.1109/TIT.1964.1053693

    18. [18]

      ZHAN Furui, YAO Nianmin, GAO Zhenguo, et al. Efficient key generation leveraging wireless channel reciprocity for MANETs[J]. Journal of Network and Computer Applications, 2018, 103: 18–28. doi: 10.1016/j.jnca.2017.11.014

    19. [19]

      WONG C W, WONG T F, and SHEA J M. Secret-Sharing LDPC codes for the BPSK-constrained Gaussian wiretap channel[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 551–564. doi: 10.1109/TIFS.2011.2139208

    20. [20]

      ZHANG Shengjun, JIN Liang, LOU Yangming, et al. Secret key generation based on two-way randomness for TDD-SISO system[J]. China Communications, 2018, 15(7): 202–216. doi: 10.1109/CC.2018.8424614

    21. [21]

      BENNETT C H, BRASSARD G, CREPEAU C, et al. Generalized privacy amplification[J]. IEEE Transactions on Information Theory, 1995, 41(6): 1915–1923. doi: 10.1109/18.476316

    22. [22]

      ZENG X and DURRANI T S. Estimation of mutual information using copula density function[J]. Electronics Letters, 2011, 47(8): 493–494. doi: 10.1049/el.2011.0778

  • 加载中
    1. [1]

      Kaihui TUZhihong HUANGZhengrong HOUHaigang YANG . Research on Efficient FPGA Bitstream Generation System Based on Mode Matching and Hierarchical Mapping. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190143

    2. [2]

      Guangkai LIUHoude QUANHuixian SUNPeizhang CUIKuo CHIShaolin YAO . Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190157

    3. [3]

      Xinyu DAHaobo WANGZhangkai LUOHang HULei NIYu PAN . Dual-polarization Satellite Security Transmission Scheme Based on Double Layer Multi-Parameter Weighted-type FRactional Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(8): 1973-1981. doi: 10.11999/JEIT181135

    4. [4]

      Yaguan QIANHongbo LUShouling JIWujie ZHOUShuhui WUBensheng YUNXiangxing TAOJingsheng LEI . Adversarial Example Generation Based on Particle Swarm Optimization. Journal of Electronics and Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777

    5. [5]

      Yiwei PANHua PENGTianyun LIWenya WANG . A Novel Radiometric Signature of Time-Division Multiple Access Signals and Its Application to Specific Emitter Identification. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190163

    6. [6]

      Jinfu XUJin WUJunwei LITongzhou QUYongxing DONG . Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism. Journal of Electronics and Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775

    7. [7]

      Ningning QINLei JINJian XUFan XULe YANG . Neighbor Information Constrained Node Scheduling in Stochastic Heterogeneous Wireless Sensor Networks. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190094

    8. [8]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    9. [9]

      Shunwai ZHANGQi WEI . Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.119991/JEIT190069

    10. [10]

      Zhen DAIPingbo WANGHongkai Wei . Signal Detection Based on Sigmoid Function in Non-Gaussian Noise. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190012

    11. [11]

      Shuxin CHENLei HONGHao WUZhuowei LIULonghua YUE . Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181121

    12. [12]

      Lun TANGRunlin MAHeng YANGQianbin CHEN . Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180770

    13. [13]

      Hai LIYijing LIRenbiao WU . Generalized Adjacent Multi-beam Adaptive Processing Based Low-altitude Wind-shear Wind Speed Estimation under Aircraft Yawing. Journal of Electronics and Information Technology, 2019, 41(7): 1728-1734. doi: 10.11999/JEIT180758

    14. [14]

      Gongguo XUGanlin SHANXiusheng DUANChenglin QIAOHaotian WANG . Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181129

    15. [15]

      Huan ZHANGHong LEI . An Error Bound of Signal Recovery for Penalized Programs in Linear Inverse Problems. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT181125

    16. [16]

      Yang LIWeitao ZHANGShuntian LOU . Deep Convolution Blind Separation of Acoustic Signals Based on Joint Diagonalization. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT190067

    17. [17]

      Yang ZHOUTianqi ZHANG . Blind Estimation of the Pseudo Noise Sequence and Information Sequence for Short Code Synchronous and Asynchronous DS-CDMA Signal. Journal of Electronics and Information Technology, 2019, 41(7): 1540-1547. doi: 10.11999/JEIT180812

    18. [18]

      Ying JIANGBingqie WANGJun HANYi HE . Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing. Journal of Electronics and Information Technology, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723

    19. [19]

      Fei WANGShichao WUShaolin LIUYahui ZHANGYing WEI . Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT180900

    20. [20]

      Shibao LIShengzhi WANGJianhang LIUTingpei HUANGXin ZHANG . Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180599

Metrics
  • PDF Downloads(40)
  • Abstract views(276)
  • HTML views(209)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return