高级搜索

基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法

孙兵 阮怀林 吴晨曦 钟华

引用本文: 孙兵, 阮怀林, 吴晨曦, 钟华. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, doi: 10.11999/JEIT181041 shu
Citation:  Bing SUN, Huailin RUAN, Chenxi WU, Hua ZHONG. Direction of Arrival Estimation with Coprime Array Based on Toeplitz Covariance Matrix Reconstruction[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181041 shu

基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法

    作者简介: 孙兵: 男,1991年生,博士生,研究方向为空间信息处理、雷达及雷达对抗理论与技术;
    阮怀林: 男,1964年生,教授,博士生导师,主要研究方向为空间信息处理、雷达及雷达对抗理论与技术、压缩感知理论;
    吴晨曦: 男,1988年生,讲师,博士生,研究方向为阵列信号处理、稀疏重构技术;
    钟华: 男,1991年生,博士生,研究方向为阵列信号处理;
    通讯作者: 阮怀林, 13721052122@163.com
  • 基金项目: 国家自然科学基金(61171170),安徽省自然科学基金(1408085QF115)

摘要: 针对基于互质阵列的欠定DOA估计方法对于虚拟阵元非连续部分利用率不高的问题,该文提出一种基于Toeplitz协方差矩阵重构的DOA估计方法。首先,从互质阵列差联合阵的角度分析虚拟阵元分布特性,结合其与协方差矩阵中各元素得到的波程差存在对应关系,将协方差矩阵进行扩展得到一个数据缺失的高维协方差矩阵;然后,根据矩阵填充理论,用迹范数代替秩范数进行松弛,对缺失元素进行填充;最后,利用现有root-MUSIC方法进行DOA估计。理论分析和仿真结果表明,该方法提升了虚拟阵元的利用率,从而增加了虚拟孔径和可估计信号数,同时无需对角度域进行离散化处理,有效消除了模型失配的影响,并且避免了正则化参数选取问题,提高了估计精度和分辨率。

English

    1. [1]

      VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682

    2. [2]

      LIU Chunlin and VAIDYANATHAN P P. Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438–1442. doi: 10.1109/LSP.2015.2409153

    3. [3]

      LIU Jing, ZHOU Weidong, HUANG Defeng, et al. Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array[J]. AEU-International Journal of Electronics and Communications, 2018, 84: 8–12. doi: 10.1016/j.aeue.2017.10.026

    4. [4]

      ALQADAH H F and SCHOLNIK D P. Stable DOA estimation with sparse sensor arrays[C]. 2017 IEEE Radar Conference, Washington, USA, 2017: 803–808.

    5. [5]

      赵季红, 马兆恬, 曲桦, 等. 冲击噪声下基于矩阵预处理的稀疏重构DoA估计[J]. 电子与信息学报, 2018, 40(3): 670–675. doi: 10.11999/JEIT170371
      ZHAO Jihong, MA Zhaotian, QU Hua, et al. DoA estimation based on matrix preconditioning through sparse reconstruction in impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(3): 670–675. doi: 10.11999/JEIT170371

    6. [6]

      蔡晶晶, 宗汝, 蔡辉. 基于空域平滑稀疏重构的DOA估计算法[J]. 电子与信息学报, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538
      CAI Jingjing, ZONG Ru, and CAI Hui. DOA estimation via sparse representation of the smoothed array covariance matrix[J]. Journal of Electronics &Information Technology, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538

    7. [7]

      LV Wanghan, WANG Huali, LIU Feng, et al. Wideband DOA estimation based on co-prime arrays with sub-Nyquist sampling[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(9): 1717–1720. doi: 10.1587/transfun.E99.A.1717

    8. [8]

      SHEN Qing, CUI Wei, LIU Wei, et al. Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept[J]. Signal Processing, 2017, 130: 299–304. doi: 10.1016/j.sigpro.2016.07.022

    9. [9]

      CAI Jingjing, LIU Wei, ZONG Ru, et al. Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods[J]. Signal Processing, 2018, 145: 59–67. doi: 10.1016/j.sigpro.2017.11.012

    10. [10]

      CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650

    11. [11]

      LI Yuanxin and CHI Yuejie. Compressive parameter estimation with multiple measurement vectors via structured low-rank covariance estimation[C]. 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, 2014: 384–387.

    12. [12]

      RAMIREZ J and KROLIK J. Multiple source localization with moving co-prime arrays[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2374–2378.

    13. [13]

      BOUDAHER E, JIA Yong, AHMAD F, et al. Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3797–3808. doi: 10.1109/TSP.2015.2432734

    14. [14]

      BOUDAHER E, AHMAD F, and AMIN M G. Sparsity-based extrapolation for direction-of-arrival estimation using co-prime arrays[C]. Proceedings of SPIE 9857, Compressive Sensing V: from Diverse Modalities to Big Data Analytics, Baltimore, USA, 2016: 98570M.

    15. [15]

      王洪雁, 房云飞, 裴炳南. 基于矩阵补全的二阶统计量重构DOA估计方法[J]. 电子与信息学报, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826
      WANG Hongyan, FANG Yunfei, and PEI Bingnan. Matrix completion based second order statistic reconstruction DOA estimation method[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826

    16. [16]

      CHEN Caihua, HE Bingsheng, and YUAN Xiaoming. Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2012, 32(1): 227–245. doi: 10.1093/imanum/drq039

    17. [17]

      MA Shiqian, GOLDFARB D, and CHEN Lifeng. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1/2): 321–353. doi: 10.1007/s10107-009-0306-5

    18. [18]

      LI Bo and PETROPULU A. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2444–2448.

    19. [19]

      HU Yao, ZHANG Debing, YE Jieping, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117–2130. doi: 10.1109/TPAMI.2012.271

    20. [20]

      WU Xiaohuan, ZHU Weiping, and YAN Jun. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226

    21. [21]

      LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vectors[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 1–12. doi: 10.1109/TWC.2013.071113.121305

    1. [1]

      司伟建吴迪陈涛吴娜. 一种阵列互耦矩阵与波达方向的级联估计方法. 电子与信息学报, doi: 10.3724/SP.J.1146.2013.01330

    2. [2]

      冯明月何明浩陈昌孝韩俊. 基于Bessel先验快速稀疏贝叶斯学习的互质阵列DOA估计. 电子与信息学报, doi: 10.11999/JEIT170951

    3. [3]

      王剑书樊养余杜瑞吕国云. 适用于二维阵列的无格稀疏波达方向估计算法. 电子与信息学报, doi: 10.11999/JEIT180340

    4. [4]

      黄岩廖桂生李军李婕. 基于连续差联合阵列的非等距线阵无模糊波束形成方法. 电子与信息学报, doi: 10.11999/JEIT150321

    5. [5]

      刘兆霆何劲刘中. 基于电磁矢量阵列孔径扩展方法的相干目标DOA估计. 电子与信息学报, doi: 10.3724/SP.J.1146.2009.01377

    6. [6]

      刘松庞育才. 基于扩展ESPRIT的随机阵列高效DoA估计算法. 电子与信息学报, doi: 10.11999/JEIT180672

    7. [7]

      刘兆霆何劲刘中. 线性电磁矢量阵列的空时极化平滑算法及相干源多参数估计. 电子与信息学报, doi: 10.3724/SP.J.1146.2010.00034

    8. [8]

      方庆园韩勇金铭宋立众乔晓林. 基于噪声子空间特征值重构的DOA估计算法. 电子与信息学报, doi: 10.3724/SP.J.1146.2013.02014

    9. [9]

      李存勖陈伯孝. 基于空域稀疏性的方位依赖阵列误差校正算法. 电子与信息学报, doi: 10.11999/JEIT161318

    10. [10]

      闫锋刚王军沈毅金铭. 基于半实值Capon的高效波达方向估计算法. 电子与信息学报, doi: 10.11999/JEIT141034

    11. [11]

      徐亮曾操廖桂生李军. 基于特征波束形成的强弱信号波达方向与信源数估计方法. 电子与信息学报, doi: 10.3724/SP.J.1146.2010.00418

    12. [12]

      闫锋刚齐晓辉刘帅沈毅金铭. 基于子空间旋转变换的低复杂度波达角估计算法. 电子与信息学报, doi: 10.11999/JEIT150539

    13. [13]

      文才吴建新王彤周延彭进业. 波束-多普勒酉ESPRIT多目标DOA估计. 电子与信息学报, doi: 10.11999/JEIT170707

    14. [14]

      赵永红张林让刘楠解虎. 一种新的基于稀疏表示的宽带信号DOA估计方法. 电子与信息学报, doi: 10.11999/JEIT150423

    15. [15]

      潘捷周建江. 基于凸优化的Khatri-Rao子空间宽带DOA估计. 电子与信息学报, doi: 10.3724/SP.J.1146.2012.00742

    16. [16]

      郑桂妹陈伯孝杨明磊. 基于矢量传感器MIMO雷达的发射极化优化DOA估计算法. 电子与信息学报, doi: 10.3724/SP.J.1146.2013.00648

    17. [17]

      杨学敏李广军郑植. 基于稀疏表示的相干分布式非圆信号的参数估计. 电子与信息学报, doi: 10.3724/SP.J.1146.2013.00444

    18. [18]

      王鹏邱天爽任福全李景春谭海峰. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法. 电子与信息学报, doi: 10.11999/JEIT151217

    19. [19]

      季飞余华谢泽明张军朱一成. 基于DOA矩阵法的矢量传感器阵列二维波达方向估计. 电子与信息学报, doi: 10.3724/SP.J.1146.2007.01420

    20. [20]

      司伟建周炯赛曲志昱. 稀疏极化敏感阵列的波达方向和极化参数联合估计. 电子与信息学报, doi: 10.11999/JEIT150840

  • 图 1  互质阵列示意图

    图 2  差联合阵示意图

    图 3  可估计信号数目比较

    图 4  分辨率比较

    图 5  信噪比对角度均方根误差影响

    图 6  快拍数对角度均方根误差影响

    图 7  运算时间随信号数变化

  • 加载中
图(7)
计量
  • PDF下载量:  10
  • 文章访问数:  126
  • HTML全文浏览量:  78
  • 引证文献数: 0
文章相关
  • 通讯作者:  阮怀林, 13721052122@163.com
  • 收稿日期:  2018-11-14
  • 录用日期:  2019-03-14
  • 网络出版日期:  2019-04-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章