高级搜索

G矩阵修正法在一维综合孔径微波辐射计成像中的应用

张爱丽 刘浩 武林 牛立杰 张成 陈雪 吴季

引用本文: 张爱丽, 刘浩, 武林, 牛立杰, 张成, 陈雪, 吴季. G矩阵修正法在一维综合孔径微波辐射计成像中的应用[J]. 电子与信息学报, 2019, 41(11): 2632-2638. doi: 10.11999/JEIT181067 shu
Citation:  Aili ZHANG, Hao LIU, Lin WU, Lijie NIU, Cheng ZHANG, Xue CHEN, Ji WU. The Application of the G-matrix Modification Methods to the Imaging of the 1-D Synthetic Aperture Microwave Radiometer[J]. Journal of Electronics and Information Technology, 2019, 41(11): 2632-2638. doi: 10.11999/JEIT181067 shu

G矩阵修正法在一维综合孔径微波辐射计成像中的应用

    作者简介: 张爱丽: 女,1991年生,博士生,研究方向为一维综合孔径微波辐射计高精度成像;
    刘浩: 男,1978年生,研究员,研究方向为干涉式综合孔径辐射计的系统和信号处理;
    武林: 男,1985年生,副研究员,研究方向是综合孔径辐射计理论与仪器研究;
    牛立杰: 男,1974年生,博士生,研究方向为辐射计系统及定标技术;
    张成: 男,1978年生,副研究员,研究方向为综合孔径辐射计系统和数据处理;
    陈雪: 女,1982年生,助理研究员,研究方向为天线仿真设计;
    吴季: 男,1958年生,研究员,研究方向为微波遥感及空间探测
    通讯作者: 刘浩,liuhao@mirslab.cn
  • 基金项目: 国家自然科学基金(41675035)

摘要: 1维综合孔径微波辐射计通常会采用G矩阵模型法来实现亮温图像的重建。对于1维辐射计系统,成像过程主要包含:辐射计仪器观测2维全视场的目标场景亮温,得到1维的可见度函数采样值,再通过对系统参数矩阵G求逆来实现目标场景的1维图像重建。由于1维辐射计系统的采样基线只分布在空间频率域的1个维度上,所以在图像重建过程中,需要实现矩阵G从2维到1维的转换。对此,该文提出了两种适用于1维综合孔径微波辐射计成像的G矩阵修正方法。并针对目前已经完成的8单元辐射计地面样机系统和目前正在研制的10单元盐度计样机系统,通过理论分析和仿真实验,验证了G矩阵修正法对1维综合孔径微波辐射计成像结果的改善效果,以及对天线方向图旁瓣恶化所引入成像误差的有效抑制。

English

    1. [1]

      CORBELLA I, TORRES F, DUFFO N, et al. MIRAS calibration and performance: Results from the SMOS in-orbit commissioning phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3147–3155. doi: 10.1109/TGRS.2010.2102769

    2. [2]

      MARTÍN-NEIRA M, OLIVA R, CORBELLA I, et al. SMOS instrument performance and calibration after six years in orbit[J]. Remote Sensing of Environment, 2016, 180: 19–39. doi: 10.1016/j.rse.2016.02.036

    3. [3]

      LE VINE D M, LAGERLOEF G S E, COLOMB F R, et al. Aquarius: An instrument to monitor sea surface salinity from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2040–2050. doi: 10.1109/TGRS.2007.898092

    4. [4]

      MCNAIRN H, JACKSON T J, WISEMAN G, et al. The soil moisture active passive validation experiment 2012(SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2784–2801. doi: 10.1109/TGRS.2014.2364913

    5. [5]

      PIEPMEIER J R, FOCARDI P, HORGAN K A, et al. SMAP l-band microwave radiometer: Instrument design and first year on orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1954–1966. doi: 10.1109/TGRS.2016.2631978

    6. [6]

      NIU Lijie, LIU Hao, WU Lin, et al. Experimental study of an L-band synthetic aperture radiometer for ocean salinity measurement[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 418–421. doi: 10.1109/IGARSS.2016.7729103.

    7. [7]

      牛立杰, 刘浩, 吴季. 高灵敏度、高稳定度微波辐射计技术研究与实验验证[J]. 电子与信息学报, 2017, 39(8): 2028–2032. doi: 10.11999/JEIT161112
      NIU Lijie, LIU Hao, and WU Ji. Research and experimental verification on high sensitivity and high stability microwave radiometer[J]. Journal of Electronics &Information Technology, 2017, 39(8): 2028–2032. doi: 10.11999/JEIT161112

    8. [8]

      LIU Hao, NIU Lijie, ZHANG Cheng, et al. System study and development of an L-band 1-D synthetic aperture radiometer for ocean salinity measurement[C]. Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 1916–1919. doi: 10.1109/IGARSS.2013.6723179.

    9. [9]

      TANNER A B and SWIFT C T. Calibration of a synthetic aperture radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 257–267. doi: 10.1109/36.210465

    10. [10]

      CORBELLA I, TORRES F, CAMPS A, et al. Brightness-temperature retrieval methods in synthetic aperture radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 285–294. doi: 10.1109/TGRS.2008.2002911

    11. [11]

      RUF C S, SWIFT C T, TANNER A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 597–611. doi: 10.1109/36.7685

    12. [12]

      LE VINE D M, GRIFFIS A J, SWIFT C T, et al. ESTAR: A synthetic aperture microwave radiometer for remote sensing applications[J]. Proceedings of the IEEE, 1994, 82(12): 1787–1801. doi: 10.1109/5.338071

    13. [13]

      CORBELLA I, CAMPS A, TORRES F, et al. Analysis of noise-injection networks for interferometric-radiometer calibration[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(4): 545–552. doi: 10.1109/22.842026

    14. [14]

      张成. 干涉式成像微波辐射计遥感图像的模拟与成像分析[D].[博士论文], 中国科学院研究生院(空间科学与应用研究中心), 2007.
      ZHANG Cheng. Radiometric image simulation and imaging analysis for synthetic aperture interferometric radiometer[D].[Ph.D. dissertation], Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2007.

    15. [15]

      杨晓城, 阎敬业, 吴季. 解析矩阵法在全极化综合孔径辐射计中的应用[J]. 电波科学学报, 2013, 28(6): 1201–1205.
      YANG Xiaocheng, YAN Jingye, and WU Ji. Application of a resolving matrix approach in full polarization interferometric radiometer[J]. Chinese Journal of Radio Science, 2013, 28(6): 1201–1205.

    16. [16]

      金梦彤, 刘浩, 武林, 等. 星载一维综合孔径微波辐射计海洋盐度探测任务仿真及外部误差源分析[J]. 遥感技术与应用, 2017, 32(2): 346–355.
      JIN Mengtong, LIU Hao, WU Lin, et al. Task simulation and external error sources analysis for an ocean salinity mission with one-dimensional synthetic aperture microwave radiometer[J]. Remote Sensing Technology and Application, 2017, 32(2): 346–355.

    17. [17]

      DURAN I, WU Lin, CORBELLA I, et al. SMOS floor error impact and migation on ocean imaging[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1437–1440. doi: 10.1109/IGARSS.2015.7326048.

    18. [18]

      LE VINE D M, DINNAT E P, ABRAHAM S, et al. The Aquarius simulator and cold-sky calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3198–3120. doi: 10.1109/TGRS.2011.2161481

    1. [1]

      张天骐, 胡延平, 冯嘉欣, 张晓艳. 基于零空间矩阵匹配的极化码参数盲识别算法. 电子与信息学报, 2020, 41(0): 1-7.

    2. [2]

      赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌. 面向可靠性的5G网络切片重构及映射算法. 电子与信息学报, 2020, 42(6): 1478-1485.

    3. [3]

      刘新, 阎焜, 杨光耀, 叶盛波, 张群英, 方广有. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究. 电子与信息学报, 2020, 41(0): 1-8.

    4. [4]

      徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈. 电子与信息学报, 2020, 41(0): 1-11.

    5. [5]

      李根, 马彦恒, 侯建强, 徐公国. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法. 电子与信息学报, 2020, 42(0): 1-8.

    6. [6]

      李根, 马彦恒, 侯建强, 徐公国. 基于子孔径Keystone变换的曲线轨迹大斜视SAR回波模拟. 电子与信息学报, 2020, 41(0): 1-8.

    7. [7]

      段永强, 王振占, 张升伟. 风云三号(D)气象卫星微波湿温度计系统建模和仿真. 电子与信息学报, 2020, 42(6): 1549-1556.

    8. [8]

      宋广南, 卢海梁, 李浩, 李一楠, 郎量, 董思乔, 李鹏飞, 吕容川. 复杂天气及海风对天基被动干涉微波辐射无源探测系统性能的影响. 电子与信息学报, 2020, 42(0): 1-8.

    9. [9]

      王永娟, 王涛, 袁庆军, 高杨, 王相宾. 密码算法旁路立方攻击改进与应用. 电子与信息学报, 2020, 42(5): 1087-1093.

    10. [10]

      贾连印, 陈明鲜, 李孟娟, 游进国, 丁家满. 基于状态视图的高效Hilbert编码和解码算法. 电子与信息学报, 2020, 42(6): 1494-1501.

    11. [11]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    12. [12]

      蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法. 电子与信息学报, 2020, 41(0): 1-7.

    13. [13]

      姚敏立, 王旭健, 张峰干, 戴定成. 基于动态参数差分进化算法的多约束稀布矩形面阵优化. 电子与信息学报, 2020, 42(5): 1281-1287.

    14. [14]

      高东, 梁子林. 基于能量效率的双层非正交多址系统资源优化算法. 电子与信息学报, 2020, 42(5): 1237-1243.

    15. [15]

      陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法. 电子与信息学报, 2020, 42(5): 1297-1302.

    16. [16]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报, 2020, 42(5): 1102-1109.

    17. [17]

      张斌, 吴浩明. 一种面向连接的快速多维包分类算法. 电子与信息学报, 2020, 42(6): 1526-1533.

    18. [18]

      王威丽, 陈前斌, 唐伦. 虚拟网络切片中的在线异常检测算法研究. 电子与信息学报, 2020, 42(6): 1460-1467.

    19. [19]

      张凯, 陈彬, 许志伟. 基于多目标进化策略算法的DNA核酸编码设计. 电子与信息学报, 2020, 42(6): 1365-1373.

    20. [20]

      曹祥红, 李欣妍, 魏晓鸽, 李森, 黄梦溪, 李栋禄. 基于Dijkstra-ACO混合算法的应急疏散路径动态规划. 电子与信息学报, 2020, 42(6): 1502-1509.

  • 图 1  仿真辐射计在轨观测的海洋目标场景的亮温图像

    图 2  样机系统单元天线在真实孔径方向上的方向图

    图 3  天线方向图采用取最大值方法实现2维向1维的转换

    图 4  样机辐射计采用G矩阵模型法的成像仿真结果

    图 5  样机辐射计采用G矩阵修正算法一得到的成像仿真结果

    图 6  10单元盐度计一个馈源天线在真实孔径方向上的方向图

    图 7  10单元盐度计辐射计系统分别采用G矩阵修正算法1和G矩阵修正算法2得到的成像仿真结果

    表 1  针对地面样机系统和盐度计辐射计系统,仿真G矩阵模型法、修正算法1和修正算法2的成像结果(K)

    成像误差统计参数单位 8单元辐射计地面样机系统 10单元盐度计系统
    G矩阵模型法 修正算法1 修正算法1 修正算法2
    RMSE 1.5553 0.1382 1.9834 0.1625
    STD 1.5692 0.1387 0.3538 0.0696
    MEAN 0.0058 0.0141 1.9521 0.1471
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  21
  • 文章访问数:  996
  • HTML全文浏览量:  563
文章相关
  • 通讯作者:  刘浩, liuhao@mirslab.cn
  • 收稿日期:  2018-11-22
  • 录用日期:  2019-03-11
  • 网络出版日期:  2019-04-12
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章