-

Citation: Lin SHI, Baofeng GUO, Juntao MA, Chaoxuan SHANG, Hui XIE, Huiyan ZENG. Rotation Center Estimation Algorithm for ISAR Image of the Space Target Based on Image Rotation and Correlation[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1280-1286.

# Rotation Center Estimation Algorithm for ISAR Image of the Space Target Based on Image Rotation and Correlation

• Corresponding author: Baofeng GUO, guobao_feng870714@126.com
Accepted Date: 2019-02-25
Available Online: 2019-06-01

Figures(8) / Tables(4)

• The equivalent rotation center should be estimated accurately in the Inverse Synthetic Aperture Radar (ISAR) for the issue of image defocusing induced by the Migration Through Resolution Cells (MTRC). In this paper, an equivalent rotation center estimation algorithm based on image rotation and correlation is proposed for the space target. First, the instantaneous imaging mechanism of ISAR is analyzed. Second, two images with different observation angles are obtained by using the echo data with the same motion compensation algorithm. Finally, the equivalent rotation center is estimated based on the scaled image pixel rotation and image correlation. Consequently, the estimated position of the rotation center is obtained, when the assumed rotation center is in accordance with the real one and the maximum correlation coefficient of two images is achieved. The results demonstrate the effectiveness and robustness of the proposed algorithm.
1. [1]

周叶剑, 张磊, 王虹现, 等. 空间轨道目标的逆合成孔径雷达成像质量分析[J]. 雷达学报, 2017, 6(1): 17–24. doi: 10.12000/JR16136
ZHOU Yejian, ZHANG Lei, WANG Hongxian, et al. Performance analysis on ISAR imaging of space targets[J]. Journal of Radars, 2017, 6(1): 17–24. doi: 10.12000/JR16136

2. [2]

邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005
XING Mengdao, GAO Yuexin, CHEN Jianlai, et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science &Technology Review, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005

3. [3]

谷文堃, 王党卫, 马晓岩. 分布式MIMO-ISAR子图像融合方法[J]. 雷达学报, 2017, 6(1): 90–97. doi: 10.12000/JR16042
GU Wenkun, WANG Dangwei, and MA Xiaoyan. Distributed MIMO-ISAR sub-image fusion method[J]. Journal of Radars, 2017, 6(1): 90–97. doi: 10.12000/JR16042

4. [4]

XU Gang, YANG Lei, BI Guoan, et al. Enhanced ISAR imaging and motion estimation with parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 940–952. doi: 10.1109/TCI.2017.2750330

5. [5]

GUO Baofeng, WANG Junling, GAO Meiguo, et al. Research on spatial-variant property of bistatic ISAR imaging plane of space target[J]. Chinese Physics B, 2015, 24(4): 048402. doi: 10.1088/1674-1056/24/4/048402

6. [6]

ZHANG Shunsheng, SUN Sibo, ZHANG Wei, et al. High-resolution bistatic ISAR image formation for high-speed and complex-motion targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3520–3531. doi: 10.1109/JSTARS.2015.2417192

7. [7]

SHI Lin, GUO Baofeng, MA Juntao, et al. A novel channel calibration method for bistatic ISAR imaging system[J]. Applied Sciences, 2018, 8(11): 2160. doi: 10.3390/app8112160

8. [8]

马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12): 2834–2843.
MA Juntao, GAO Meiguo, HU Wenhua, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2834–2843.

9. [9]

符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303

10. [10]

马林. 空间目标探测雷达技术[M]. 北京: 电子工业出版社, 2013: 10–13.
MA Lin. Radar Technology for Space Target Detection[M]. Beijing: Publishing House of Electronics Industry, 2013: 10–13.

11. [11]

姜正林, 邢孟道, 保铮. ISAR成像的越距离单元走动校正[J]. 电子与信息学报, 2002, 24(5): 577–583.
JIANG Zhenglin, XING Mengdao, and BAO Zheng. Correction of migration through resolution cell in ISAR imaging[J]. Journal of Electronics &Information Technology, 2002, 24(5): 577–583.

12. [12]

韩兴斌, 胡卫东, 郁文贤. ISAR越距离单元走动校正的近似极坐标算法[J]. 系统工程与电子技术, 2007, 29(3): 346–349. doi: 10.3321/j.issn:1001-506X.2007.03.004
HAN Xingbin, HU Weidong, and YU Wenxian. Approximately polar formatting algorithm to compensate migration through resolution cells in ISAR imaging[J]. Systems Engineering and Electronics, 2007, 29(3): 346–349. doi: 10.3321/j.issn:1001-506X.2007.03.004

13. [13]

郭宝锋, 尚朝轩, 王俊岭, 等. 双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法[J]. 物理学报, 2014, 63(23): 238406. doi: 10.7498/aps.63.238406
GUO Baofeng, SHANG Chaoxuan, WANG Junling, et al. Correction of migration through resolution cell in bistatic inverse synthetic aperture radar in the presence of time-varying bistatic angle[J]. Acta Physica Sinica, 2014, 63(23): 238406. doi: 10.7498/aps.63.238406

14. [14]

MARTORELLA M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 281–294. doi: 10.1109/TAES.2008.4517004

15. [15]

XU Gang, YANG Lei, BI Guoan, et al. Maneuvering target imaging and scaling by using sparse inverse synthetic aperture[J]. Signal Processing, 2017, 137: 149–159. doi: 10.1016/j.sigpro.2017.01.016

16. [16]

KANG B S, BAE J H, KANG M S, et al. Bistatic-ISAR cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1962–1973. doi: 10.1109/TAES.2017.2677798

17. [17]

SHENG Jialian, XING Mengdao, ZHANG Lei, et al. ISAR cross-range scaling by using sharpness maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 165–169. doi: 10.1109/LGRS.2014.2330625

18. [18]

叶春茂, 许稼, 左渝, 等. 逆合成孔径雷达目标等效旋转中心估计[J]. 清华大学学报: 自然科学版, 2009, 49(8): 1205–1208. doi: 10.16511/j.cnki.qhdxxb.2009.08.023
YE Chunmao, XU Jia, ZUO Yu, et al. Rotating center estimation for inverse synthetic aperture radar imaging[J]. Journal of Tsinghua University:Science and Technology, 2009, 49(8): 1205–1208. doi: 10.16511/j.cnki.qhdxxb.2009.08.023

19. [19]

叶春茂, 许稼, 彭应宁, 等. 多视观测下雷达转台目标成像的关键参数估计[J]. 中国科学: 信息科学, 2010, 53(8): 1641–1652.
YE Chunmao, XU Jia, PENG Yingning, et al. Key parameter estimation for radar rotating object imaging with multi-aspect observations[J]. Science China Information Sciences, 2010, 53(8): 1641–1652.

20. [20]

陈磊, 韩蕾, 白显宗, 等. 空间目标轨道力学与误差分析[M]. 北京: 国防工业出版社, 2010: 204–205.
CHEN Lei, HAN Lei, BAI Xianzong, et al. Orbital Dynamics and Error Analysis of Space Object[M]. Beijing: National Defend Industry Press, 2010: 204–205.

21. [21]

黄雅静. 非匀速旋转目标ISAR成像技术研究[D]. [硕士论文], 国防科学技术大学, 2008: 99–116.
HUANG Yajing. Research on ISAR Imaging of non-uniformly rotational targets[D]. [Master dissertation], National University of Defense Technology, 2008: 99–116.

22. [22]

WEINMANN F. Ray tracing with PO/PTD for RCS modeling of large complex objects[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(6): 1797–1806. doi: 10.1109/TAP.2006.875910

1. [1]

Jian HUYing LUOQun ZHANGLe KANGQifang He . Three-dimensional Interferometric Imaging and Micro-motion Feature Extraction of Rotating Space Targets Based on Narrowband Radar. Journal of Electronics and Information Technology, 2019, 41(2): 270-277. doi: 10.11999/JEIT180372

2. [2]

Dong LIChengxiang ZHANGDi ZHAOXiaoheng TANXichuan ZHOUMuyang ZHAN . Fast Cross-range Scaling for ISAR Imaging Based on Pseudo Polar Fourier Transform. Journal of Electronics and Information Technology, 2019, 41(2): 262-269. doi: 10.11999/JEIT180299

3. [3]

Lichao YANGMengdao XINGGuangcai SUNAnle WANGJialian SHENG . A Novel ISAR Imaging Algorithm for Microwave Photonics Radar. Journal of Electronics and Information Technology, 2019, 41(6): 1271-1279. doi: 10.11999/JEIT180661

4. [4]

Changyu HULing WANGDongqiang ZHU . Sparse ISAR Imaging Exploiting Dictionary Learning. Journal of Electronics and Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747

5. [5]

Yu LIJie CHENYuanzhi ZHANG . Progress in Research on Marine Oil Spills Detection Using Synthetic Aperture Radar. Journal of Electronics and Information Technology, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468

6. [6]

Zhichao MENGJinyue LUPengfei XIELei ZHANGHongxian WANG . Imaging Technology of Forward-looking SAR Imaging for Unmanned Aerial Vehicle. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190096

7. [7]

Haibo WANGWenhua HUANGTao BAYue JIANG . Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180912

8. [8]

Yongsheng ZHAODexiu HUZhixin LIUYongjun ZHAOChuang ZHAO . Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar. Journal of Electronics and Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858

9. [9]

Zhiqiang HOUShuai WANGXiufeng LIAOWangsheng YUJiaoyao WANGChuanhua CHEN . Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation. Journal of Electronics and Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921

10. [10]

Rong LANYang LIN . Suppressed Non-local Spatial Intuitionistic Fuzzy C-means Image Segmentation Algorithm. Journal of Electronics and Information Technology, 2019, 41(6): 1472-1479. doi: 10.11999/JEIT180651

11. [11]

Jianwei LIChangwen QUShujuan PENGYuan JIANG . Ship Detection in SAR images Based on Generative Adversarial Network and Online Hard Examples Mining. Journal of Electronics and Information Technology, 2019, 41(1): 143-149. doi: 10.11999/JEIT180050

12. [12]

Feng ZHAOMimi ZHANGHanqiang LIU . Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information. Journal of Electronics and Information Technology, 2019, 41(5): 1106-1113. doi: 10.12000/JRIT180605

13. [13]

Yuan WU . An Airborne SAR Image Target Location Algorithm Based on Parameter Refining. Journal of Electronics and Information Technology, 2019, 41(5): 1063-1068. doi: 10.11999/JEIT180564

14. [14]

Zhiyu LUJianhui WANGTianzhu QINBin BA . Direct Position Determination for Coherently Distributed Noncircular Source Based on Symmetric Shift Invariance. Journal of Electronics and Information Technology, 2019, 41(3): 537-543. doi: 10.11999/JEIT180433

15. [15]

Hongmei TANGBiying WANGLiying HANYatong ZHOU . Image Saliency Detection Based on Object Compactness and Regional Homogeneity Strategy. Journal of Electronics and Information Technology, 2019, 41(10): 2532-2540. doi: 10.11999/JEIT190101

16. [16]

Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098

17. [17]

Jing LIUHan LIUKaiyu HUANGLiyu SU . Automatic Rank Estimation Based Riemannian Optimization Matrix Completion Algorithm and Application to Image Completion. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181076

18. [18]

Guangcai SUNYuqi WANGZhaozhao GAOFan JIANGMengdao XINGZheng BAO . A Dual Satellite Interferometric Precise Localization Method Based on Short Synthetic Aperture. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT180940

19. [19]

Minjuan GAOHongshe DANGLili WEIXuande ZHANG . Image Quality Assessment Algorithm Based on Non-local Gradient. Journal of Electronics and Information Technology, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597

20. [20]

Fupeng LIJingbiao LIUGuangyi WANGKangtai WANG . An Image Encryption Algorithm Based on Chaos Set. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190344