-
Advanced Search

Citation: Lin SHI, Baofeng GUO, Juntao MA, Chaoxuan SHANG, Hui XIE, Huiyan ZENG. Rotation Center Estimation Algorithm for ISAR Image of the Space Target Based on Image Rotation and Correlation[J]. Journal of Electronics and Information Technology, ;2019, 41(6): 1280-1286. doi: 10.11999/JEIT181086 shu

Rotation Center Estimation Algorithm for ISAR Image of the Space Target Based on Image Rotation and Correlation

  • Corresponding author: Baofeng GUO, guobao_feng870714@126.com
  • Received Date: 2018-11-26
    Accepted Date: 2019-02-25
    Available Online: 2019-06-01

Figures(8) / Tables(4)

  • The equivalent rotation center should be estimated accurately in the Inverse Synthetic Aperture Radar (ISAR) for the issue of image defocusing induced by the Migration Through Resolution Cells (MTRC). In this paper, an equivalent rotation center estimation algorithm based on image rotation and correlation is proposed for the space target. First, the instantaneous imaging mechanism of ISAR is analyzed. Second, two images with different observation angles are obtained by using the echo data with the same motion compensation algorithm. Finally, the equivalent rotation center is estimated based on the scaled image pixel rotation and image correlation. Consequently, the estimated position of the rotation center is obtained, when the assumed rotation center is in accordance with the real one and the maximum correlation coefficient of two images is achieved. The results demonstrate the effectiveness and robustness of the proposed algorithm.
  • 加载中
    1. [1]

      周叶剑, 张磊, 王虹现, 等. 空间轨道目标的逆合成孔径雷达成像质量分析[J]. 雷达学报, 2017, 6(1): 17–24. doi: 10.12000/JR16136
      ZHOU Yejian, ZHANG Lei, WANG Hongxian, et al. Performance analysis on ISAR imaging of space targets[J]. Journal of Radars, 2017, 6(1): 17–24. doi: 10.12000/JR16136

    2. [2]

      邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005
      XING Mengdao, GAO Yuexin, CHEN Jianlai, et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science &Technology Review, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005

    3. [3]

      谷文堃, 王党卫, 马晓岩. 分布式MIMO-ISAR子图像融合方法[J]. 雷达学报, 2017, 6(1): 90–97. doi: 10.12000/JR16042
      GU Wenkun, WANG Dangwei, and MA Xiaoyan. Distributed MIMO-ISAR sub-image fusion method[J]. Journal of Radars, 2017, 6(1): 90–97. doi: 10.12000/JR16042

    4. [4]

      XU Gang, YANG Lei, BI Guoan, et al. Enhanced ISAR imaging and motion estimation with parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 940–952. doi: 10.1109/TCI.2017.2750330

    5. [5]

      GUO Baofeng, WANG Junling, GAO Meiguo, et al. Research on spatial-variant property of bistatic ISAR imaging plane of space target[J]. Chinese Physics B, 2015, 24(4): 048402. doi: 10.1088/1674-1056/24/4/048402

    6. [6]

      ZHANG Shunsheng, SUN Sibo, ZHANG Wei, et al. High-resolution bistatic ISAR image formation for high-speed and complex-motion targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3520–3531. doi: 10.1109/JSTARS.2015.2417192

    7. [7]

      SHI Lin, GUO Baofeng, MA Juntao, et al. A novel channel calibration method for bistatic ISAR imaging system[J]. Applied Sciences, 2018, 8(11): 2160. doi: 10.3390/app8112160

    8. [8]

      马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12): 2834–2843.
      MA Juntao, GAO Meiguo, HU Wenhua, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2834–2843.

    9. [9]

      符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
      FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303

    10. [10]

      马林. 空间目标探测雷达技术[M]. 北京: 电子工业出版社, 2013: 10–13.
      MA Lin. Radar Technology for Space Target Detection[M]. Beijing: Publishing House of Electronics Industry, 2013: 10–13.

    11. [11]

      姜正林, 邢孟道, 保铮. ISAR成像的越距离单元走动校正[J]. 电子与信息学报, 2002, 24(5): 577–583.
      JIANG Zhenglin, XING Mengdao, and BAO Zheng. Correction of migration through resolution cell in ISAR imaging[J]. Journal of Electronics &Information Technology, 2002, 24(5): 577–583.

    12. [12]

      韩兴斌, 胡卫东, 郁文贤. ISAR越距离单元走动校正的近似极坐标算法[J]. 系统工程与电子技术, 2007, 29(3): 346–349. doi: 10.3321/j.issn:1001-506X.2007.03.004
      HAN Xingbin, HU Weidong, and YU Wenxian. Approximately polar formatting algorithm to compensate migration through resolution cells in ISAR imaging[J]. Systems Engineering and Electronics, 2007, 29(3): 346–349. doi: 10.3321/j.issn:1001-506X.2007.03.004

    13. [13]

      郭宝锋, 尚朝轩, 王俊岭, 等. 双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法[J]. 物理学报, 2014, 63(23): 238406. doi: 10.7498/aps.63.238406
      GUO Baofeng, SHANG Chaoxuan, WANG Junling, et al. Correction of migration through resolution cell in bistatic inverse synthetic aperture radar in the presence of time-varying bistatic angle[J]. Acta Physica Sinica, 2014, 63(23): 238406. doi: 10.7498/aps.63.238406

    14. [14]

      MARTORELLA M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 281–294. doi: 10.1109/TAES.2008.4517004

    15. [15]

      XU Gang, YANG Lei, BI Guoan, et al. Maneuvering target imaging and scaling by using sparse inverse synthetic aperture[J]. Signal Processing, 2017, 137: 149–159. doi: 10.1016/j.sigpro.2017.01.016

    16. [16]

      KANG B S, BAE J H, KANG M S, et al. Bistatic-ISAR cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1962–1973. doi: 10.1109/TAES.2017.2677798

    17. [17]

      SHENG Jialian, XING Mengdao, ZHANG Lei, et al. ISAR cross-range scaling by using sharpness maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 165–169. doi: 10.1109/LGRS.2014.2330625

    18. [18]

      叶春茂, 许稼, 左渝, 等. 逆合成孔径雷达目标等效旋转中心估计[J]. 清华大学学报: 自然科学版, 2009, 49(8): 1205–1208. doi: 10.16511/j.cnki.qhdxxb.2009.08.023
      YE Chunmao, XU Jia, ZUO Yu, et al. Rotating center estimation for inverse synthetic aperture radar imaging[J]. Journal of Tsinghua University:Science and Technology, 2009, 49(8): 1205–1208. doi: 10.16511/j.cnki.qhdxxb.2009.08.023

    19. [19]

      叶春茂, 许稼, 彭应宁, 等. 多视观测下雷达转台目标成像的关键参数估计[J]. 中国科学: 信息科学, 2010, 53(8): 1641–1652.
      YE Chunmao, XU Jia, PENG Yingning, et al. Key parameter estimation for radar rotating object imaging with multi-aspect observations[J]. Science China Information Sciences, 2010, 53(8): 1641–1652.

    20. [20]

      陈磊, 韩蕾, 白显宗, 等. 空间目标轨道力学与误差分析[M]. 北京: 国防工业出版社, 2010: 204–205.
      CHEN Lei, HAN Lei, BAI Xianzong, et al. Orbital Dynamics and Error Analysis of Space Object[M]. Beijing: National Defend Industry Press, 2010: 204–205.

    21. [21]

      黄雅静. 非匀速旋转目标ISAR成像技术研究[D]. [硕士论文], 国防科学技术大学, 2008: 99–116.
      HUANG Yajing. Research on ISAR Imaging of non-uniformly rotational targets[D]. [Master dissertation], National University of Defense Technology, 2008: 99–116.

    22. [22]

      WEINMANN F. Ray tracing with PO/PTD for RCS modeling of large complex objects[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(6): 1797–1806. doi: 10.1109/TAP.2006.875910

  • 加载中
    1. [1]

      Changyu HULing WANGDongqiang ZHU . Sparse ISAR Imaging Exploiting Dictionary Learning. Journal of Electronics and Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747

    2. [2]

      Hongyun YANGFengyan WANG . Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT190098

    3. [3]

      Xiaofeng WANGMingyue SUNWeimin GE . An Incremental Feature Extraction Method without Estimating Image Covariance Matrix. Journal of Electronics and Information Technology, 2019, 41(0): 1-9. doi: 10.11999/JEIT181138

    4. [4]

      Yun GELin MAShunliang JIANGFamao YE . The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval. Journal of Electronics and Information Technology, 2019, 0(0): 1-8. doi: 10.11999/JEIT190017

    5. [5]

      Xinhua LUCarles Navarro MANCHÓNZhongyong WANGChuanzong ZHANG . Channel Estimation Algorithm Using Temporal-Spatial Structure for Up-Link of Massive MIMO Systems. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180676

    6. [6]

      Nan SUFengzhou DAIHongwei LIU . Micro-motion Characteristic Analysis and Parameters Estimation for Blunt-nosed Chamfered Cone Based on HRRP Sequence. Journal of Electronics and Information Technology, 2019, 41(7): 1751-1757. doi: 10.11999/JEIT180520

    7. [7]

      Shanchao YANGKangsheng TIANChangfei WU . Target Assignment Method for Phased Array Radar Network Based on Quality of Service. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT181133

    8. [8]

      Fengshou HEYou HEZhunga LIUCong’an XU . Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition. Journal of Electronics and Information Technology, 2019, 41(0): 1-13. doi: 10.11999/JEIT180899

    9. [9]

      Jie PANShuai WANGDaojing LIXiaochun LU . A Channel Phase Error Compensation Method for Space Borne Array SAR Based on Antenna Pattern and Doppler Correlation Coefficient. Journal of Electronics and Information Technology, 2019, 41(7): 1758-1765. doi: 10.11999/JEIT181061

    10. [10]

      Lei PUXinxi FENGZhiqiang HOUWangsheng YU . Robust Visual Tracking Based on Spatial Reliability Constraint. Journal of Electronics and Information Technology, 2019, 41(7): 1650-1657. doi: 10.11999/JEIT180780

    11. [11]

      Jiexin ZHANGJianmin PANGZheng ZHANGMing TAIHao LIU . Heterogeneity Quantization Method of Cyberspace Security System Based on Dissimilar Redundancy Structure. Journal of Electronics and Information Technology, 2019, 41(7): 1594-1600. doi: 10.11999/JEIT180764

    12. [12]

      Yilin WANGShilong MANan ZOUGuolong LIANG . Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing. Journal of Electronics and Information Technology, 2019, 41(7): 1682-1689. doi: 10.11999/JEIT180796

    13. [13]

      Jiaqi WEILei ZHANGHongwei LIUJialian SHENG . A Novel Micro-motion Multi-target Wideband Resolution Algorithm Based on Curve Overlap Extrapolation. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT190033

    14. [14]

      Shuxin CHENLei HONGHao WUZhuowei LIULonghua YUE . Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT181121

    15. [15]

      Zijian TIANFangyuan HE . A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing. Journal of Electronics and Information Technology, 2019, 41(0): 1-7. doi: 10.11999/JEIT180857

    16. [16]

      Yang ZHOUTianqi ZHANG . Blind Estimation of the Pseudo Noise Sequence and Information Sequence for Short Code Synchronous and Asynchronous DS-CDMA Signal. Journal of Electronics and Information Technology, 2019, 41(7): 1540-1547. doi: 10.11999/JEIT180812

    17. [17]

      Ying JIANGBingqie WANGJun HANYi HE . Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing. Journal of Electronics and Information Technology, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723

    18. [18]

      Hai LIYijing LIRenbiao WU . Generalized Adjacent Multi-beam Adaptive Processing Based Low-altitude Wind-shear Wind Speed Estimation under Aircraft Yawing. Journal of Electronics and Information Technology, 2019, 41(7): 1728-1734. doi: 10.11999/JEIT180758

    19. [19]

      Huan ZHANGHong LEI . An Error Bound of Signal Recovery for Penalized Programs in Linear Inverse Problems. Journal of Electronics and Information Technology, 2019, 41(0): 1-6. doi: 10.11999/JEIT181125

    20. [20]

      Xiaoqing TANGGuihui XIEYajun SHEShuai ZHANG . LoRa Backscatter Communication Method Based on Direct Digital Frequency Synthesis. Journal of Electronics and Information Technology, 2019, 41(0): 1-8. doi: 10.11999/JEIT190001

Metrics
  • PDF Downloads(30)
  • Abstract views(272)
  • HTML views(153)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return