高级搜索

基于频谱校正的中国余数定理多普勒频率估计算法

曹成虎 赵永波 索之玲 庞晓娇 徐保庆

引用本文: 曹成虎, 赵永波, 索之玲, 庞晓娇, 徐保庆. 基于频谱校正的中国余数定理多普勒频率估计算法[J]. 电子与信息学报, 2019, 41(12): 2903-2910. doi: 10.11999/JEIT181102 shu
Citation:  Chenghu CAO, Yongbo ZHAO, Zhiling SUO, Xiaojiao PANG, Baoqing XU. Doppler Frequency Estimation Method Based on Chinese Remainder Theorem with Spectrum Correction[J]. Journal of Electronics and Information Technology, 2019, 41(12): 2903-2910. doi: 10.11999/JEIT181102 shu

基于频谱校正的中国余数定理多普勒频率估计算法

    作者简介: 曹成虎: 男,1987年生,博士生,研究方向为雷达信号处理和雷达信号检测与跟踪;
    赵永波: 男,1972年生,教授,博士生导师,研究方向为雷达信号处理、自适应信号处理和雷达信号参数估计;
    索之玲: 女,1981年生,博士生,研究方向为弱目标检测技术;
    庞晓娇: 女,1993年生,博士生,研究方向为压缩感知和阵列信号处理;
    徐保庆: 男,1992年生,博士生,研究方向为雷达信号处理和MIMO雷达
    通讯作者: 赵永波,ybzhao@xidian.edu.cn
  • 基金项目: 高等学校学科创新引智计划(B18039)

摘要: 脉冲多普勒(PD)雷达能够检测目标多普勒频率和有效抑制杂波,该优势使得PD雷达得到了广泛应用。但速度模糊的存在,往往对PD目标检测带来困难。该文紧密结合PD雷达体制的特点,在基于PD雷达参差重频模式下,提出一种基于全相位离散傅里叶变换(DFT)相位差频谱校正的最优余数封闭式鲁棒中国余数定理(CFRCRT)的多普勒频率估计算法。理论分析和仿真实验表明该文算法在测量精度和实时性能上可以满足工程上应用的需求。

English

    1. [1]

      CHUANG Tingwei, CHEN Chaur-Chin, and CHIEN Betty. Image sharing and recovering based on Chinese remainder theorem[C]. International Symposium on Computer, Consumer and Control, Xi’an, China, 2016: 817–820.

    2. [2]

      XIAO Hanshen, HUANG Yufeng, YE Yu, et al. Robustness in Chinese remainder theorem for multiple numbers and remainder coding[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4347–4361. doi: 10.1109/TSP.2018.2846228

    3. [3]

      LU Dianjun, WANG Yu, ZHANG Xiaoqin, et al. A threshold secret sharing scheme based on LMCA and Chinese remainder theorem[C]. The 9th International Symposium on Computational Intelligence and Design, Hangzhou, China, 2016: 439–442.

    4. [4]

      CHEN Jinrui, LIU Kesheng, YAN Xuehu, et al. An information hiding scheme based on Chinese remainder theorem[C]. The 3rd IEEE International Conference on Image, Vision and Computing, Chongqing, China, 2018: 785–790.

    5. [5]

      LIN E and MONTE L. Joint frequency and angle of arrival estimation using the Chinese remainder theorem[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1547–1551.

    6. [6]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. A closed-form robust Chinese remainder theorem based Multibaseline phase unwrapping[C]. 2017 International Conference on Circuits, Devices and Systems, Chengdu, China, 2017: 115–119.

    7. [7]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. Multibaseline phase unwrapping through robust Chinese remainder theorem[C]. The 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies, Xi’an, China, 2017: 462–466.

    8. [8]

      SILVA Band FRAIDENRAICH G. Performance analysis of the classic and robust Chinese remainder theorems in pulsed Doppler radars[J]. IEEE Transactions on Signal Processing, 2018, 66(18): 4898–4903. doi: 10.1109/TSP.2018.2863667

    9. [9]

      LI Xiaoping, WANG Wenjie, YANG Bin, et al. Distance estimation based on phase detection with robust Chinese remainder theorem[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 4204–4208.

    10. [10]

      WANG Qian, YAN Xiao, and QIN Kaiyu. Parameters estimation algorithm for the exponential signal by the interpolated all-phase DFT Approach[C]. The 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2014: 37–41.

    11. [11]

      王文杰, 李小平. 鲁棒的闭式中国余数定理及其在欠采样频率估计中的应用[J]. 信号处理, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017
      WANG Wenjie and LI Xiaoping. The closed-form robust Chinese remainder theorem and its application in frequency estimation with Undersampling[J]. Journal of Signal Processing, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017

    12. [12]

      CANDAN Ç. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6): 351–354. doi: 10.1109/LSP.2011.2136378

    13. [13]

      CANDAN Ç. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9): 913–916. doi: 10.1109/LSP.2013.2273616

    14. [14]

      ABOUTANIOS E and MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237–1242. doi: 10.1109/TSP.2005.843719

    15. [15]

      BELEGA D, PETRI D, and DALLET D. Iterative sine-wave frequency estimation by generalized Fourier interpolation algorithms[C]. The 11th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 2014: 1–4.

    16. [16]

      GAO Yue, ZHANG Xiong, and SONG Jun. Modified algorithm of sinusoid signal frequency estimation based on Quinn and Aboutanios iterative algorithms[C]. The 13th International Conference on Signal Processing, Chengdu, China, 2016: 232–235.

    17. [17]

      LU Xinning and ZHANG Yonghui. Phase detection algorithm and precision analysis based on all phase FFT[C]. The International Conference on Automatic Control and Artificial Intelligence, Xiamen, China, 2012: 1564–1567.

    18. [18]

      LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese remainder theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314–4322. doi: 10.1109/TSP.2009.2025079

    19. [19]

      WANG Wei, LI Xiaoping, XIA Xianggen, et al. The largest dynamic range of a generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2015, 22(2): 254–258. doi: 10.1109/LSP.2014.2322200

    20. [20]

      XIAO Li, XIA Xianggen. A generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2014, 21(1): 55–59. doi: 10.1109/LSP.2013.2289326

    1. [1]

      赵培焱, 欧阳鑫信, 彭华峰. 基于中国余数定理的跳频信号相时延估计方法. 电子与信息学报, 2018, 40(3): 656-662.

    2. [2]

      许凌云, 张小飞, 许宗泽, 于淼. 双基地MIMO雷达四维角度和多普勒频率联合估计. 电子与信息学报, 2012, 34(12): 2942-2947.

    3. [3]

      吴卫华, 江晶, 冯讯, 刘重阳. 基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法. 电子与信息学报, 2015, 37(6): 1490-1494.

    4. [4]

      张玉玺, 孙进平, 张冰尘, 洪文. 基于压缩感知理论的多普勒解模糊处理. 电子与信息学报, 2011, 33(9): 2103-2107.

    5. [5]

      张天骐, 袁帅, 刘董华, 李群. 高动态环境下高阶双二进制偏移载波信号的精确捕获. 电子与信息学报, 2018, 40(11): 2728-2735.

    6. [6]

      洪永彬, 高梅国, 王俊岭, 秦国杰. Keystone变换半盲速点效应的抑制和消除. 电子与信息学报, 2014, 36(1): 175-180.

    7. [7]

      葛建军, 张春城. 基于模拟退火算法的机载脉冲多普勒雷达中重复频率选择研究. 电子与信息学报, 2008, 30(3): 573-575.

    8. [8]

      郁春来万建伟占荣辉. 一种PCM相参脉冲序列多普勒频率变化率估计算法. 电子与信息学报, 2008, 30(10): 2303-2306.

    9. [9]

      李宏, 秦玉亮, 李彦鹏, 王宏强, 黎湘. 基于FrFT的LFM相参脉冲信号多普勒频率变化率估计算法. 电子与信息学报, 2010, 32(11): 2718-2723.

    10. [10]

      樊来耀, 张平, 姬红兵. 脉冲多普勒雷达的弱信号检测和速度跟踪. 电子与信息学报, 1995, 17(6): 607-612.

    11. [11]

      王晓湘. 高动态多普勒频率估计及其Cramer-Rao界. 电子与信息学报, 2004, 26(2): 206-212.

    12. [12]

      汪金真, 宿绍莹, 陈曾平. 基于时间-调频斜率分布的多普勒调频率估计. 电子与信息学报, 2015, 37(9): 2138-2143.

    13. [13]

      符渭波, 苏涛, 赵永波, 何学辉. 空间色噪声环境下双基地MIMO雷达角度和多普勒频率联合估计方法. 电子与信息学报, 2011, 33(12): 2858-2862.

    14. [14]

      张永军. 星载合成孔径雷达多普勒调频率估计精度分析. 电子与信息学报, 2004, 26(2): 200-205.

    15. [15]

      张剑云, 郑志东, 李小波. 双基地MIMO雷达收发角及多普勒频率的联合估计算法. 电子与信息学报, 2010, 32(8): 1843-1848.

    16. [16]

      杨德钊, 欧攀, 林志立, 宋凝芳. 激光多普勒测速雷达高精度频率估计综合算法. 电子与信息学报, 2011, 33(7): 1689-1693.

    17. [17]

      李宏, 秦玉亮, 李彦鹏, 王宏强, 黎湘. 基于相位补偿的BPSK相参脉冲串信号多普勒频率变化率估计算法. 电子与信息学报, 2010, 32(9): 2156-2160.

    18. [18]

      曹文杰, 张磊, 杜兰, 刘宏伟. 基于瞬时频率估计的进动锥体目标微多普勒频率提取方法. 电子与信息学报, 2015, 37(5): 1091-1096.

    19. [19]

      王睿, 杨汝良. 椭圆轨道下雷达多普勒特性估计. 电子与信息学报, 2004, 26(1): 107-111.

    20. [20]

      符渭波, 苏涛, 赵永波, 何学辉. 空间色噪声环境下基于时空结构的双基地MIMO雷达角度和多普勒频率联合估计方法. 电子与信息学报, 2011, 33(7): 1649-1654.

  • 图 1  传统DFT幅频响应和相频响应

    图 2  全相位DFT幅频响应和相频响应

    图 3  多普勒频率估计流程图

    图 4  中国余数定理算法测量频率的精度

    图 5  中国余数定理算法的时间复杂度

    图 6  基于频谱校正的封闭式鲁棒CRT测量精度

    图 7  基于频谱校正的封闭式鲁棒CRT计算复杂度

    表 1  基于谱校正的中国余数定理的方案测量结果(Hz)

    $F$${\hat f_{{\rm{r}}1}}$余数理论值${\hat f_{{\rm{r}}2}}$余数理论值${\hat f_{{\rm{r}}3}}$余数理论值$\Delta F\;$
    ${\rm{5}}{\rm{.5122}} \times {\rm{1}}{{\rm{0}}^{\rm{3}}}$${\rm{512}}{\rm{.60}}$$512$${\rm{5512}}{\rm{.65}}$$5512$${\rm{5512}}{\rm{.90}}$$5512$${\rm{1}}.57 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 1}}}}$
    $512.58$$5512.57$$5512.58$$1.66 \times {10^{ - 1}}$
    $515.04$$5516.01$$5516.97$$3.41 \times {10^0}$
    ${\rm{3}}{\rm{.1157}} \times {\rm{1}}{{\rm{0}}^{\rm{5}}}$$1569.27$$1570$$3569.69$$3570$$5569.80$$5570$$2.03 \times {10^{ - 2}}$
    $1568.72$$3568.70$$5568.95$$4.99 \times {10^{ - 2}}$
    $1574.25$$3566.42$$5574.39$$8.42 \times {10^{ - 1}}$
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  61
  • 文章访问数:  2364
  • HTML全文浏览量:  682
文章相关
  • 通讯作者:  赵永波, ybzhao@xidian.edu.cn
  • 收稿日期:  2018-11-28
  • 录用日期:  2019-04-12
  • 网络出版日期:  2019-05-22
  • 刊出日期:  2019-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章