高级搜索

基于频谱校正的中国余数定理多普勒频率估计算法

曹成虎 赵永波 索之玲 庞晓娇 徐保庆

引用本文: 曹成虎, 赵永波, 索之玲, 庞晓娇, 徐保庆. 基于频谱校正的中国余数定理多普勒频率估计算法[J]. 电子与信息学报, doi: 10.11999/JEIT181102 shu
Citation:  Chenghu CAO, Yongbo ZHAO, Zhiling SUO, Xiaojiao PANG, Baoqing XU. Doppler Frequency Estimation Method Based on Chinese Remainder Theorem with Spectrum Correction[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181102 shu

基于频谱校正的中国余数定理多普勒频率估计算法

    作者简介: 曹成虎: 男,1987年生,博士生,研究方向为雷达信号处理和雷达信号检测与跟踪;
    赵永波: 男,1972年生,教授,博士生导师,研究方向雷达信号处理、自适应信号处理和雷达信号参数估计;
    索之玲: 女,1981年生,博士生,研究方向弱目标检测技术;
    庞晓娇: 女,1993年生,博士生,研究方向压缩感知和阵列信号处理;
    徐保庆: 男,1992年生,博士生,研究方向雷达信号处理和MIMO雷达;
    通讯作者: 赵永波, ybzhao@xidian.edu.cn
  • 基金项目: 高等学校学科创新引智计划(B18039)

摘要: 脉冲多普勒(PD)雷达能够检测目标多普勒频率和有效抑制杂波,该优势使得PD雷达得到了广泛应用。但速度模糊的存在,往往对PD目标检测带来困难。该文紧密结合PD雷达体制的特点,在基于PD雷达参差重频模式下,提出一种基于全相位离散傅里叶变换(DFT)相位差频谱校正的最优余数封闭式鲁棒中国余数定理(CFRCRT)的多普勒频率估计算法。理论分析和仿真实验表明该文算法在测量精度和实时性能上可以满足工程上应用的需求。

English

    1. [1]

      CHUANG Tingwei, CHEN C C, and CHIEN B. Image sharing and recovering based on Chinese remainder theorem[C]. Proceedings of International Symposium on Computer, Consumer and Control, Xi’an, China, 2016: 817–820.

    2. [2]

      XIAO Hanshen, HUANG Yufeng, YE Yu, et al. Robustness in Chinese remainder theorem for multiple numbers and remainder coding[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4347–4361. doi: 10.1109/TSP.2018.2846228

    3. [3]

      LU Dianjun, WANG Yu, ZHANG Xiaoqin, et al. A threshold secret sharing scheme based on LMCA and Chinese remainder theorem[C]. Proceedings of the 9th International Symposium on Computational Intelligence and Design, Hangzhou, China, 2016: 439–442.

    4. [4]

      CHEN Jinrui, LIU Kesheng, YAN Xuehu, et al. An information hiding scheme based on Chinese remainder theorem[C]. Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing, Chongqing, China, 2018: 785–790.

    5. [5]

      LIN E and MONTE L. Joint frequency and angle of arrival estimation using the Chinese remainder theorem[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, WA, USA, 2017: 1547–1551.

    6. [6]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. A closed-form robust Chinese remainder theorem based Multibaseline phase unwrapping[C]. Proceedings of 2017 International Conference on Circuits, Devices and Systems, Chengdu, China, 2017: 115–119.

    7. [7]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. Multibaseline phase unwrapping through robust Chinese remainder theorem[C]. Proceedings of the 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies, Xi’an, China, 2017: 462–466.

    8. [8]

      SILVA Band FRAIDENRAICH G. Performance analysis of the classic and robust Chinese remainder theorems in pulsed Doppler radars[J]. IEEE Transactions on Signal Processing, 2018, 66(18): 4898–4903. doi: 10.1109/TSP.2018.2863667

    9. [9]

      LI Xiaoping, WANG Wenjie, YANG Bin, et al. Distance estimation based on phase detection with robust Chinese remainder theorem[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 4204–4208.

    10. [10]

      WANG Qian, YAN Xiao, and QIN Kaiyu. Parameters estimation algorithm for the exponential signal by the interpolated all-phase DFT Approach[C]. Proceedings of the 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2014: 37–41.

    11. [11]

      王文杰, 李小平. 鲁棒的闭式中国余数定理及其在欠采样频率估计中的应用[J]. 信号处理, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017
      WANG Wenjie and LI Xiaoping. The closed-form robust Chinese remainder theorem and its application in frequency estimation with Undersampling[J]. Journal of Signal Processing, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017

    12. [12]

      CANDAN Ç. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6): 351–354. doi: 10.1109/LSP.2011.2136378

    13. [13]

      CANDAN Ç. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9): 913–916. doi: 10.1109/LSP.2013.2273616

    14. [14]

      ABOUTANIOS E and MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237–1242. doi: 10.1109/TSP.2005.843719

    15. [15]

      BELEGA D, PETRI D, and DALLET D. Iterative sine-wave frequency estimation by generalized Fourier interpolation algorithms[C]. Proceedings of the 11th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 2014: 1–4.

    16. [16]

      GAO Yue, ZHANG Xiong, and SONG Jun. Modified algorithm of sinusoid signal frequency estimation based on Quinn and Aboutanios iterative algorithms[C]. Proceedings of the 13th International Conference on Signal Processing, Chengdu, China, 2016: 232–235.

    17. [17]

      LU Xinning and ZHANG Yonghui. Phase detection algorithm and precision analysis based on all phase FFT[C]. Proceedings of the International Conference on Automatic Control and Artificial Intelligence, Xiamen, China, 2012: 1564–1567.

    18. [18]

      LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese remainder theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314–4322. doi: 10.1109/TSP.2009.2025079

    19. [19]

      WANG Wei, LI Xiaoping, XIA Xianggen, et al. The largest dynamic range of a generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2015, 22(2): 254–258. doi: 10.1109/LSP.2014.2322200

    20. [20]

      XIAO Li, XIA Xianggen. A generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2014, 21(1): 55–59. doi: 10.1109/LSP.2013.2289326

    1. [1]

      潘洁王帅李道京卢晓春. 基于方向图和多普勒相关系数的天基阵列SAR通道相位误差补偿方法. 电子与信息学报, doi: 10.11999/JEIT181061

    2. [2]

      汪海波黄文华巴涛姜悦. 短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术. 电子与信息学报, doi: 10.11999/JEIT180912

    3. [3]

      刘伯权郭佳佳罗治民. 声表面波谐振器回波信号的频率估计. 电子与信息学报, doi: 10.11999/JEIT180875

    4. [4]

      赵勇胜胡德秀刘智鑫赵拥军赵闯. 基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法. 电子与信息学报, doi: 10.11999/JEIT180858

    5. [5]

      张建中穆贺强文树梁李彦兵高红卫. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法. 电子与信息学报, doi: 10.11999/JEIT180851

    6. [6]

      杨文哲杨宏雷王学运张升康赵环杨军冯克明. 高精度光纤时间频率一体化传递. 电子与信息学报, doi: 10.11999/JEIT180807

    7. [7]

      唐晓庆谢桂辉佘亚军张帅. 基于直接数字频率合成的LoRa散射通信方法. 电子与信息学报, doi: 10.11999/JEIT190001

    8. [8]

      杨善超田康生刘仁争郑玉军. 基于价值优化的相控阵雷达任务调度算法. 电子与信息学报, doi: 10.11999/JEIT190147

    9. [9]

      徐保庆赵永波庞晓娇. 基于实值处理的联合波束域双基地MIMO雷达测角算法. 电子与信息学报, doi: 10.11999/JEIT180766

    10. [10]

      陆潞高梅国. 分布式阵列雷达基线位置和相位误差的卫星标校方法. 电子与信息学报, doi: 10.11999/JEIT181152

    11. [11]

      李永伟谢文冲. 基于空时内插的端射阵机载雷达杂波补偿新方法. 电子与信息学报, doi: 10.11999/JEIT181131

    12. [12]

      杨宏宇王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法. 电子与信息学报, doi: 10.11999/JEIT190098

    13. [13]

      贺丰收何友刘准钆徐从安. 卷积神经网络在雷达自动目标识别中的研究进展. 电子与信息学报, doi: 10.11999/JEIT180899

    14. [14]

      李瑞张群苏令华梁佳罗迎. 基于稀疏贝叶斯学习的双基雷达关联成像. 电子与信息学报, doi: 10.11999/JEIT180933

    15. [15]

      杨善超田康生吴长飞. 基于服务质量的相控阵雷达网目标分配方法. 电子与信息学报, doi: 10.11999/JEIT181133

    16. [16]

      吕晓德张汉良刘忠胜孙正豪刘平羽. 基于LTE信号的外辐射源雷达同频基站干扰抑制方法研究. 电子与信息学报, doi: 10.11999/JEIT180904

    17. [17]

      周杨张天骐. 同/异步短码DS-CDMA信号伪码序列及信息序列盲估计. 电子与信息学报, doi: 10.11999/JEIT180812

    18. [18]

      蒋莹王冰切韩俊何翼. 基于分布式压缩感知的宽带欠定信号DOA估计. 电子与信息学报, doi: 10.11999/JEIT180723

    19. [19]

      苏楠戴奉周刘宏伟. 基于HRRP序列的钝头倒角锥目标微动特性分析及参数估计. 电子与信息学报, doi: 10.11999/JEIT180520

    20. [20]

      刘鲁涛王传宇. 基于极化敏感阵列均匀线阵的二维DOA估计. 电子与信息学报, doi: 10.11999/JEIT180832

  • 图 1  传统DFT幅频响应和相频响应

    图 2  全相位DFT幅频响应和相频响应

    图 3  多普勒频率估计流程图

    图 4  中国余数定理算法测量频率的精度

    图 5  中国余数定理算法的时间复杂度

    图 6  基于频谱校正的封闭式鲁棒CRT测量精度

    图 7  基于频谱校正的封闭式鲁棒CRT计算复杂度

    表 1  基于谱校正的中国余数定理的方案测量结果(Hz)

    $F$${\hat f_{{\rm{r}}1}}$余数理论值${\hat f_{{\rm{r}}2}}$余数理论值${\hat f_{{\rm{r}}3}}$余数理论值$\Delta F$
    ${\rm{5}}{\rm{.5122}} \times {\rm{1}}{{\rm{0}}^{\rm{3}}}$${\rm{512}}{\rm{.60}}$$512$${\rm{5512}}{\rm{.65}}$$5512$${\rm{5512}}{\rm{.90}}$$5512$${\rm{1}}.57 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 1}}}}$
    $512.58$$5512.57$$5512.58$$1.66 \times {10^{ - 1}}$
    $515.04$$5516.01$$5516.97$$3.41 \times {10^0}$
    ${\rm{3}}{\rm{.1157}} \times {\rm{1}}{{\rm{0}}^{\rm{5}}}$$1569.27$$1570$$3569.69$$3570$$5569.80$$5570$$2.03 \times {10^{ - 2}}$
    $1568.72$$3568.70$$5568.95$$4.99 \times {10^{ - 2}}$
    $1574.25$$3566.42$$5574.39$$8.42 \times {10^{ - 1}}$
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  22
  • 文章访问数:  214
  • HTML全文浏览量:  166
  • 引证文献数: 0
文章相关
  • 通讯作者:  赵永波, ybzhao@xidian.edu.cn
  • 收稿日期:  2018-11-28
  • 录用日期:  2019-04-12
  • 网络出版日期:  2019-05-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章