高级搜索

基于频谱校正的中国余数定理多普勒频率估计算法

曹成虎 赵永波 索之玲 庞晓娇 徐保庆

引用本文: 曹成虎, 赵永波, 索之玲, 庞晓娇, 徐保庆. 基于频谱校正的中国余数定理多普勒频率估计算法[J]. 电子与信息学报, 2019, 41(12): 2903-2910. doi: 10.11999/JEIT181102 shu
Citation:  Chenghu CAO, Yongbo ZHAO, Zhiling SUO, Xiaojiao PANG, Baoqing XU. Doppler Frequency Estimation Method Based on Chinese Remainder Theorem with Spectrum Correction[J]. Journal of Electronics and Information Technology, 2019, 41(12): 2903-2910. doi: 10.11999/JEIT181102 shu

基于频谱校正的中国余数定理多普勒频率估计算法

    作者简介: 曹成虎: 男,1987年生,博士生,研究方向为雷达信号处理和雷达信号检测与跟踪;
    赵永波: 男,1972年生,教授,博士生导师,研究方向为雷达信号处理、自适应信号处理和雷达信号参数估计;
    索之玲: 女,1981年生,博士生,研究方向为弱目标检测技术;
    庞晓娇: 女,1993年生,博士生,研究方向为压缩感知和阵列信号处理;
    徐保庆: 男,1992年生,博士生,研究方向为雷达信号处理和MIMO雷达
    通讯作者: 赵永波,ybzhao@xidian.edu.cn
  • 基金项目: 高等学校学科创新引智计划(B18039)

摘要: 脉冲多普勒(PD)雷达能够检测目标多普勒频率和有效抑制杂波,该优势使得PD雷达得到了广泛应用。但速度模糊的存在,往往对PD目标检测带来困难。该文紧密结合PD雷达体制的特点,在基于PD雷达参差重频模式下,提出一种基于全相位离散傅里叶变换(DFT)相位差频谱校正的最优余数封闭式鲁棒中国余数定理(CFRCRT)的多普勒频率估计算法。理论分析和仿真实验表明该文算法在测量精度和实时性能上可以满足工程上应用的需求。

English

    1. [1]

      CHUANG Tingwei, CHEN Chaur-Chin, and CHIEN Betty. Image sharing and recovering based on Chinese remainder theorem[C]. International Symposium on Computer, Consumer and Control, Xi’an, China, 2016: 817–820.

    2. [2]

      XIAO Hanshen, HUANG Yufeng, YE Yu, et al. Robustness in Chinese remainder theorem for multiple numbers and remainder coding[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4347–4361. doi: 10.1109/TSP.2018.2846228

    3. [3]

      LU Dianjun, WANG Yu, ZHANG Xiaoqin, et al. A threshold secret sharing scheme based on LMCA and Chinese remainder theorem[C]. The 9th International Symposium on Computational Intelligence and Design, Hangzhou, China, 2016: 439–442.

    4. [4]

      CHEN Jinrui, LIU Kesheng, YAN Xuehu, et al. An information hiding scheme based on Chinese remainder theorem[C]. The 3rd IEEE International Conference on Image, Vision and Computing, Chongqing, China, 2018: 785–790.

    5. [5]

      LIN E and MONTE L. Joint frequency and angle of arrival estimation using the Chinese remainder theorem[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1547–1551.

    6. [6]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. A closed-form robust Chinese remainder theorem based Multibaseline phase unwrapping[C]. 2017 International Conference on Circuits, Devices and Systems, Chengdu, China, 2017: 115–119.

    7. [7]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. Multibaseline phase unwrapping through robust Chinese remainder theorem[C]. The 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies, Xi’an, China, 2017: 462–466.

    8. [8]

      SILVA Band FRAIDENRAICH G. Performance analysis of the classic and robust Chinese remainder theorems in pulsed Doppler radars[J]. IEEE Transactions on Signal Processing, 2018, 66(18): 4898–4903. doi: 10.1109/TSP.2018.2863667

    9. [9]

      LI Xiaoping, WANG Wenjie, YANG Bin, et al. Distance estimation based on phase detection with robust Chinese remainder theorem[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 4204–4208.

    10. [10]

      WANG Qian, YAN Xiao, and QIN Kaiyu. Parameters estimation algorithm for the exponential signal by the interpolated all-phase DFT Approach[C]. The 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2014: 37–41.

    11. [11]

      王文杰, 李小平. 鲁棒的闭式中国余数定理及其在欠采样频率估计中的应用[J]. 信号处理, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017
      WANG Wenjie and LI Xiaoping. The closed-form robust Chinese remainder theorem and its application in frequency estimation with Undersampling[J]. Journal of Signal Processing, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017

    12. [12]

      CANDAN Ç. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6): 351–354. doi: 10.1109/LSP.2011.2136378

    13. [13]

      CANDAN Ç. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9): 913–916. doi: 10.1109/LSP.2013.2273616

    14. [14]

      ABOUTANIOS E and MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237–1242. doi: 10.1109/TSP.2005.843719

    15. [15]

      BELEGA D, PETRI D, and DALLET D. Iterative sine-wave frequency estimation by generalized Fourier interpolation algorithms[C]. The 11th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 2014: 1–4.

    16. [16]

      GAO Yue, ZHANG Xiong, and SONG Jun. Modified algorithm of sinusoid signal frequency estimation based on Quinn and Aboutanios iterative algorithms[C]. The 13th International Conference on Signal Processing, Chengdu, China, 2016: 232–235.

    17. [17]

      LU Xinning and ZHANG Yonghui. Phase detection algorithm and precision analysis based on all phase FFT[C]. The International Conference on Automatic Control and Artificial Intelligence, Xiamen, China, 2012: 1564–1567.

    18. [18]

      LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese remainder theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314–4322. doi: 10.1109/TSP.2009.2025079

    19. [19]

      WANG Wei, LI Xiaoping, XIA Xianggen, et al. The largest dynamic range of a generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2015, 22(2): 254–258. doi: 10.1109/LSP.2014.2322200

    20. [20]

      XIAO Li, XIA Xianggen. A generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2014, 21(1): 55–59. doi: 10.1109/LSP.2013.2289326

    1. [1]

      周义明, 李英顺, 田小平. 基于瑞利多径衰落信道的信号包络频谱感知. 电子与信息学报, 2020, 42(5): 1231-1236.

    2. [2]

      刘焕淋, 杜理想, 陈勇, 胡会霞. 串扰感知的空分弹性光网络频谱转换器稀疏配置和资源分配方法. 电子与信息学报, 2020, 42(7): 1718-1725.

    3. [3]

      孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究. 电子与信息学报, 2020, 42(0): 1-8.

    4. [4]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    5. [5]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法. 电子与信息学报, 2020, 42(0): 1-8.

    6. [6]

      陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法. 电子与信息学报, 2020, 42(5): 1297-1302.

    7. [7]

      刘新, 阎焜, 杨光耀, 叶盛波, 张群英, 方广有. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究. 电子与信息学报, 2020, 41(0): 1-8.

    8. [8]

      刘汝卿, 蒋衍, 姜成昊, 李锋, 朱精果. 应用于激光雷达信号处理系统的放大电路接口设计. 电子与信息学报, 2020, 42(7): 1636-1642.

    9. [9]

      孙闽红, 丁辰伟, 张树奇, 鲁加战, 邵鹏飞. 基于统计相关差异的多基地雷达拖引欺骗干扰识别. 电子与信息学报, 2020, 42(0): 1-7.

    10. [10]

      吕晓德, 孙正豪, 刘忠胜, 张汉良, 刘平羽. 基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究. 电子与信息学报, 2020, 42(5): 1288-1296.

    11. [11]

      张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法. 电子与信息学报, 2020, 41(0): 1-9.

  • 图 1  传统DFT幅频响应和相频响应

    图 2  全相位DFT幅频响应和相频响应

    图 3  多普勒频率估计流程图

    图 4  中国余数定理算法测量频率的精度

    图 5  中国余数定理算法的时间复杂度

    图 6  基于频谱校正的封闭式鲁棒CRT测量精度

    图 7  基于频谱校正的封闭式鲁棒CRT计算复杂度

    表 1  基于谱校正的中国余数定理的方案测量结果(Hz)

    $F$${\hat f_{{\rm{r}}1}}$余数理论值${\hat f_{{\rm{r}}2}}$余数理论值${\hat f_{{\rm{r}}3}}$余数理论值$\Delta F\;$
    ${\rm{5}}{\rm{.5122}} \times {\rm{1}}{{\rm{0}}^{\rm{3}}}$${\rm{512}}{\rm{.60}}$$512$${\rm{5512}}{\rm{.65}}$$5512$${\rm{5512}}{\rm{.90}}$$5512$${\rm{1}}.57 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 1}}}}$
    $512.58$$5512.57$$5512.58$$1.66 \times {10^{ - 1}}$
    $515.04$$5516.01$$5516.97$$3.41 \times {10^0}$
    ${\rm{3}}{\rm{.1157}} \times {\rm{1}}{{\rm{0}}^{\rm{5}}}$$1569.27$$1570$$3569.69$$3570$$5569.80$$5570$$2.03 \times {10^{ - 2}}$
    $1568.72$$3568.70$$5568.95$$4.99 \times {10^{ - 2}}$
    $1574.25$$3566.42$$5574.39$$8.42 \times {10^{ - 1}}$
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  61
  • 文章访问数:  2447
  • HTML全文浏览量:  723
文章相关
  • 通讯作者:  赵永波, ybzhao@xidian.edu.cn
  • 收稿日期:  2018-11-28
  • 录用日期:  2019-04-12
  • 网络出版日期:  2019-05-22
  • 刊出日期:  2019-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章