高级搜索

一种视频监控中基于航迹的运动小目标检测算法

孙怡峰 吴疆 黄严严 汤光明

引用本文: 孙怡峰, 吴疆, 黄严严, 汤光明. 一种视频监控中基于航迹的运动小目标检测算法[J]. 电子与信息学报, doi: 10.11999/JEIT181110 shu
Citation:  Yifeng SUN, Jiang WU, Yanyan HUANG, Guangming TANG. A Small Moving Object Detection Algorithm Based on Track in Video Surveillance[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181110 shu

一种视频监控中基于航迹的运动小目标检测算法

    作者简介: 孙怡峰: 男,1976年生,副教授,硕士生导师,研究方向为图像处理、信息安全;
    吴疆: 男,1995年生,硕士生,研究方向为目标检测、图像处理;
    黄严严: 女,1978年生,高级工程师,研究方向为人工智能、信息安全;
    汤光明: 1963年生,教授,博士生导师,研究方向为网络安全、信息安全
    通讯作者: 吴疆,liam181113@163.com
摘要: 针对视频监控中运动小目标难以检测的问题,该文提出一种基于航迹的检测算法。首先,为了降低检测漏警率,提出区域纹理特征与差值概率融合的自适应前景提取方法;其次,为了降低检测虚警率,设计航迹关联的概率计算模型以建立疑似目标在视频帧间的关联,并设置双门限以区分疑似目标中的真实目标与虚假目标。实验结果表明,与多种经典算法相比,该算法能对定量范围内的运动小目标以更低的漏警率和虚警率实施准确检测。

English

    1. [1]

      CHEN Chenyi, LIU Mingyu, TUZEL O, et al. R-CNN for small object detection[C]. Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, 2016: 214–230.

    2. [2]

      邓鹤, 魏艳涛, 童名文, 等. 基于改进的局部反熵算子的小目标检测[J]. 通信学报, 2013, 34(4): 60–69. doi: 10.3969/j.issn.1000-436x.2013.04.007
      DENG He, WEI Yantao, TONG Mingwen, et al. Small target detection based on modified local reverse entropy operator[J]. Journal on Communications, 2013, 34(4): 60–69. doi: 10.3969/j.issn.1000-436x.2013.04.007

    3. [3]

      CAO Guimei, XIE Xuemei, YANG Wenzhe, et al. Feature-fused SSD: Fast detection for small objects[C]. Proceedings of SPIE 10615, Ninth International Conference on Graphic and Image Processing, Qingdao, China, 2017: 106151E.

    4. [4]

      REN Shaoqing, He Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031

    5. [5]

      LIN Tsungyi, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.

    6. [6]

      杨依忠, 汪鹏飞, 胡雄楼, 等. 基于鲁棒主成分分析的运动目标检测优化算法[J]. 电子与信息学报, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789
      YANG Yizhong, WANG Pengfei, HU Xionglou, et al. Moving object detection optimization algorithm based on robust principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789

    7. [7]

      ZIVKOVIC Z and VAN DER HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773–780. doi: 10.1016/j.patrec.2005.11.005

    8. [8]

      VAN DROOGENBROECK M and PAQUOT O. Background subtraction: Experiments and improvements for ViBe[C]. Proceedings of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 32–37.

    9. [9]

      薛阳, 张亚飞, 杨天宇, 等. 一种针对抖动视频序列的运动目标检测算法[J]. 激光与光电子学进展, 2018, 55(9): 091506.
      XUE Yang, ZHANG Yafei, YANG Tianyu, et al. A moving object detection algorithm aiming at jitter video sequence[J]. Laser &Optoelectronics Progress, 2018, 55(9): 091506.

    10. [10]

      WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder: Real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780–785. doi: 10.1109/34.598236

    11. [11]

      赵春江. C#数字图像处理算法典型实例[M]. 北京: 人民邮电出版社, 2009: 29–31.
      ZHAO Chunjiang. C# Digital Image Processing Algorithm for Typical Examples[M]. Beijing: Posts & Telecom Press, 2009: 29–31.

    12. [12]

      李长春, 王艳杰, 马春艳, 等. 多目标无人机微型凝视高光谱成像仪辐射校正[J]. 测绘通报, 2019(1): 60–64. doi: 10.13474/j.cnki.11-2246.2019.0012
      LI Changchun, WANG Yanjie, MA Chunyan, et al. Research on radiance correction of mini snapshot high spectrometer load on UAV using multi-target[J]. Bulletin of Surveying and Mapping, 2019(1): 60–64. doi: 10.13474/j.cnki.11-2246.2019.0012

    13. [13]

      THEODORIDIS S, 李晶皎, 王爱侠, 王骄, 等译. 模式识别[M]. 4版. 北京: 电子工业出版社, 2016: 282–288.
      THEODORIDIS S, LI Jingjiao, WANG Aixia, WANG Jiao, et al. translation. Pattern Recognition[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2016: 282–288.

    14. [14]

      GONZALEZ R C, WOODS R E, 阮秋琦, 阮宇智, 等译. 数字图像处理[M]. 3版. 北京: 电子工业出版社, 2017: 423–430.
      GONZALEZ R C, WOODS R E, RUAN Qiuqi, RUAN Yuzhi, et al. translation. Digital Image Processing[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2017: 423–430.

    15. [15]

      陈钱, 钱惟贤, 张闻文. 红外目标探测[M]. 北京: 电子工业出版社, 2016: 298–300.
      CHEN Qian, QIAN Weixian, and ZHANG Wenwen. Infrared Target Detection[M]. Beijing: Publishing House of Electronics Industry, 2016: 298–300.

    16. [16]

      姚天任, 孙洪. 现代数字信号处理[M]. 2版. 武汉: 华中科技大学出版社, 2018: 30–40.
      YAO Tianren and SUN Hong. Advanced Digital Signal Processing[M]. 2nd ed. Wuhan: Huazhong University of Science & Technology Press, 2018: 30–40.

    1. [1]

      李保珠, 关键, 董云龙. 基于航迹矢量检测的雷达与电子支援设施抗差关联算法. 电子与信息学报,

    2. [2]

      闫贺, 王珏, 黄佳, 王旭东. 基于二维速度搜索的星载SAR运动目标聚焦算法研究. 电子与信息学报,

    3. [3]

      李保珠, 张林, 董云龙, 关键. 基于航迹矢量分级聚类的雷达与电子支援措施抗差关联算法. 电子与信息学报,

    4. [4]

      王逸林, 马世龙, 邹男, 梁国龙. 时空域联合的水下未知线谱目标检测方法. 电子与信息学报,

    5. [5]

      李健伟, 曲长文, 彭书娟, 江源. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测. 电子与信息学报,

    6. [6]

      郭鹏程, 刘峥, 罗丁利, 李俭朴. 基于强散射点在线估计的距离扩展目标检测方法. 电子与信息学报,

    7. [7]

      张烨, 许艇, 冯定忠, 蒋美仙, 吴光华. 基于难分样本挖掘的快速区域卷积神经网络目标检测研究. 电子与信息学报,

    8. [8]

      李炜, 李全龙, 刘政怡. 基于加权的K近邻线性混合显著性目标检测. 电子与信息学报,

    9. [9]

      余映, 吴青龙, 邵凯旋, 康迂星, 杨鉴. 超复数域小波变换的显著性检测. 电子与信息学报,

    10. [10]

      王玉莹, 张志敏, 李宁, 范怀涛, 赵庆超. 高分宽幅SAR系统下的方位多通道运动目标成像算法研究. 电子与信息学报,

    11. [11]

      唐红梅, 王碧莹, 韩力英, 周亚同. 基于目标紧密性与区域同质性策略的图像显著性检测. 电子与信息学报,

    12. [12]

      王超, 王岩飞, 王琦, 詹学丽. 基于回波序列最小二乘拟合的高分辨率SAR运动目标速度估计. 电子与信息学报,

    13. [13]

      叶磊, 王勇, 杨强, 邓维波. 基于对数行列式散度与对称对数行列式散度的高频地波雷达目标检测器. 电子与信息学报,

    14. [14]

      陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究. 电子与信息学报,

    15. [15]

      代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测. 电子与信息学报,

    16. [16]

      杨善超, 田康生, 吴长飞. 基于服务质量的相控阵雷达网目标分配方法. 电子与信息学报,

    17. [17]

      魏嘉琪, 张磊, 刘宏伟, 盛佳恋. 曲线交叠外推的微动多目标宽带分辨算法. 电子与信息学报,

    18. [18]

      毕秀丽, 魏杨, 肖斌, 李伟生, 马建峰. 基于级联卷积神经网络的图像篡改检测算法. 电子与信息学报,

    19. [19]

      徐丹, 符吉祥, 孙光才, 邢孟道, 苏涛, 保铮. 空间目标的短时三维几何重构方法. 电子与信息学报,

    20. [20]

      吕增威, 魏振春, 韩江洪, 孙仁浩, 夏成凯. 基于多目标优化的无线传感器网络移动充电及数据收集算法. 电子与信息学报,

  • 图 1  视频帧图像与单高斯背景建模得到的运动前景二值图

    图 2  差值分布拟合曲线

    图 3  疑似目标初步检测的可视化过程

    图 4  航迹关联的双门限虚假目标过滤

    图 5  定性实验结果

    表 1  航迹关联规则

     (1) do;
     (2) for $u = 1,2,·\!·· ,U$;
     (3)  寻找${\rm{APT}}{_{U \times V}\;}$中第$u$行中的最大值${a_{uv}}$,记录其列号$v$;
     (4)  if第$v$列的最大值等于${a_{uv}}$;
     (5)      break;
     (6)  end if;
     (7) end for;
     (8) 关联$\{ {\text{Z}}_k^v\} $与$\{ \theta _{k - 1}^u\} $,删除${\rm{APT}}{_{U \times V}}\;$中的第$u$行和第$v$列元素,
      $U = U - 1 ,V = V - 1$;
     (9) while ${\rm{APT}}{_{U \times V}}\;$中存在元素大于0。
    下载: 导出CSV

    表 2  5种算法在不同视频中的MA值比较

    视频图像尺寸(pix)检测范围(%)像素数MOG2ViBe+Faster RCNN文献[5]本文算法
    blizzard$ 720 \times 480$0.10~0.12345~4140.150.781.001.000.28
    highway$ 320 \times 240$0.12~0.3092~2301.000.161.000.500.05
    Camera 01$ 1920 \times 1080$0.01~0.12207~24880.380.291.000.860.11
    Camera 02$ 1920 \times 1080$0.01~0.12207~24880.390.281.000.770.13
    下载: 导出CSV

    表 3  5种算法在不同视频中的FA值比较

    视频图像尺寸(pix)检测范围(%)像素数MOG2ViBe+Faster RCNN文献[5]本文算法
    blizzard$ 720 \times 480$0.10~0.12345~4140.710.210.000.000.18
    highway$ 320 \times 240$0.12~0.3092~2300.370.610.000.000.29
    Camera 01$ 1920 \times 1080$0.01~0.12207~24880.510.250.000.000.13
    Camera 02$ 1920 \times 1080$0.01~0.12207~24880.520.170.000.000.14
    下载: 导出CSV
  • 加载中
图(5)表(3)
计量
  • PDF下载量:  47
  • 文章访问数:  497
  • HTML全文浏览量:  432
文章相关
  • 通讯作者:  吴疆, liam181113@163.com
  • 收稿日期:  2018-11-29
  • 录用日期:  2019-03-14
  • 网络出版日期:  2019-05-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章