高级搜索

基于混合精度模数转换器的大规模MIMO-OFDM系统性能分析

刘凯 陈贵潮 陶成 周涛

引用本文: 刘凯, 陈贵潮, 陶成, 周涛. 基于混合精度模数转换器的大规模MIMO-OFDM系统性能分析[J]. 电子与信息学报, doi: 10.11999/JEIT181136 shu
Citation:  Kai LIU, Guichao CHEN, Cheng TAO, Tao ZHOU. Performance Analysis of Massive MIMO-OFDM System with Hybrid-Precision Analog-to-Digital Converter[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181136 shu

基于混合精度模数转换器的大规模MIMO-OFDM系统性能分析

    作者简介: 刘凯: 男,1987年生,博士生,研究方向为大规模MIMO;
    陈贵潮: 男,1996年生,硕士生,研究方向为大规模MIMO、低精度量化;
    陶成: 男,1963年生,教授,博士生导师,研究方向为无线通信、MIMO、扩频通信;
    周涛: 男,1988年生,副教授,研究方向为信道测量与建模;
    通讯作者: 周涛, taozhou@bjtu.edu.cn
  • 基金项目: 国家自然科学基金(61701017),中央高校基本科研业务费专项资金(2018JBM003),北京市自然科学基金(4174102),东南大学移动通信国家重点实验室开放研究基金(2018D11)

摘要: 该文对在接收端使用混合精度的模数转换器且采用迫零接收算法的大规模MIMO-OFDM系统的上行链路的频谱效率和能量效率进行了研究。采用加性量化噪声模型来对系统的性能进行分析,推导出整个系统的频谱效率和能量效率的近似闭式表达式,并通过仿真证明了表达式的正确性。研究结果表明,系统的频谱效率和每个用户的发送功率,接收端天线数目和接收端量化精度有关。数值和仿真结果还表明可以通过增加基站端的天线数量来补偿由低精度模数转换器带来的性能损失。

English

    1. [1]

      BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746

    2. [2]

      LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761

    3. [3]

      MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092

    4. [4]

      SINGH J, DABEER O, MADHOW U. On the limits of communication with low-precision analog-to-digital conversion at the receiver[J]. IEEE Transactions on Communications, 2009, 57(12): 3629–3639. doi: 10.1109/TCOMM.2009.12.080559

    5. [5]

      LI Yongzhi, TAO Cheng, SECO-GRANADOS G, et al. Channel estimation and performance analysis of one-bit massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 4075–4089. doi: 10.1109/TSP.2017.2706179

    6. [6]

      LI Yongzhi, TAO Cheng, LEE SWINDLEHURST A, et al. Downlink achievable rate analysis in massive MIMO systems with one-bit DACs[J]. IEEE Communications Letters, 2017, 21(7): 1669–1672. doi: 10.1109/LCOMM.2017.2687871

    7. [7]

      FAN Li, JIN Shi, WEN Chaokai, et al. Uplink achievable rate for massive MIMO systems with low-resolution ADC[J]. IEEE Communications Letters, 2015, 19(12): 2186–2189. doi: 10.1109/LCOMM.2015.2494600

    8. [8]

      QIAO Dan, TAN Weiqiang, ZHAO Yuyan, et al. Spectral efficiency for massive MIMO zero-forcing receiver with low-resolution ADC[C]. Proceedings of the 20168th International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 2016: 1–6. doi: 10.1109/WCSP.2016.7752527.

    9. [9]

      ZHANG Mengjiao, TAN Weiqiang, GAO Junhui, et al. Power allocation for multicell mixed-ADC massive MIMO systems in Rician fading channels[C]. Proceedings of the 20179th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017: 1–6. doi: 10.1109/WCSP.2017.8171074.

    10. [10]

      ZHANG Jiayi, DAI Linglong, HE Ziyan, et al. Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1327–1338. doi: 10.1109/JSAC.2017.2687278

    11. [11]

      ZHANG Mengjiao, TAN Weiqiang, GAO Junhui, et al. Spectral efficiency and power allocation for mixed-ADC massive MIMO system[J]. China Communications, 2018, 15(3): 112–127. doi: 10.1109/CC.2018.8331995

    12. [12]

      PITAROKOILIS A, BJÖRNSON E, and LARSSON E G. Performance of the massive MIMO uplink with OFDM and phase noise[J]. IEEE Communications Letters, 2016, 20(8): 1595–1598. doi: 10.1109/LCOMM.2016.2581169

    13. [13]

      ZAIB A, MASOOD M, ALI A, et al. Distributed channel estimation and pilot contamination analysis for massive MIMO-OFDM systems[J]. IEEE Transactions on Communications, 2016, 64(11): 4607–4621. doi: 10.1109/TCOMM.2016.2593924

    14. [14]

      ZAIB A, MASOOD M, GHOGHO M, et al. Distributive estimation of frequency selective channels for massive MIMO systems[C]. Proceedings of the 201523rd European Signal Processing Conference, Nice, France, 2015: 889–893. doi: 10.1109/EUSIPCO.2015.7362511.

    15. [15]

      ORHAN O, ERKIP E, and RANGAN S. Low power analog-to-digital conversion in millimeter wave systems: Impact of resolution and bandwidth on performance[C]. Proceedings of 2015 Information Theory and Applications Workshop, San Diego, USA, 2015: 191–198. doi: 10.1109/ITA.2015.7308988.

    16. [16]

      SHARIATI N, BJÖRNSON E, BENGTSSON M, et al. Low-complexity channel estimation in large-scale MIMO using polynomial expansion[C]. Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, 2013: 1157–1162. doi: 10.1109/PIMRC.2013.6666313.

    17. [17]

      NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848

    18. [18]

      MO Jianhua, ALKHATEEB A, ABU-SURRA S, et al. Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2274–2287. doi: 10.1109/TWC.2017.2661749

    1. [1]

      孙远李春国黄永明杨绿溪. 基于带缓存的云接入网络最优能效设计. 电子与信息学报, doi: 10.11999/JEIT180722

    2. [2]

      徐少毅高帅. M2M通信中一种基于能量效率与系统容量的多目标无线资源管理算法. 电子与信息学报, doi: 10.11999/JEIT181168

    3. [3]

      曹成虎赵永波索之玲庞晓娇徐保庆. 基于频谱校正的中国余数定理多普勒频率估计算法. 电子与信息学报, doi: 10.11999/JEIT181102

    4. [4]

      陈莹许潇月. 基于双向参考集矩阵度量学习的行人再识别. 电子与信息学报, doi: 10.11999/JEIT190159

    5. [5]

      徐保庆赵永波庞晓娇. 基于实值处理的联合波束域双基地MIMO雷达测角算法. 电子与信息学报, doi: 10.11999/JEIT180766

    6. [6]

      路新华MANCHÓNCarles Navarro王忠勇张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法. 电子与信息学报, doi: 10.11999/JEIT180676

    7. [7]

      张杰鑫庞建民张铮邰铭刘浩. 基于非相似余度架构的网络空间安全系统异构性量化方法. 电子与信息学报, doi: 10.11999/JEIT180764

    8. [8]

      杨文哲杨宏雷王学运张升康赵环杨军冯克明. 高精度光纤时间频率一体化传递. 电子与信息学报, doi: 10.11999/JEIT180807

    9. [9]

      陈树新洪磊吴昊刘卓崴岳龙华. 学生 t 混合势均衡多目标多伯努利滤波器. 电子与信息学报, doi: 10.11999/JEIT181121

    10. [10]

      李扬张伟涛楼顺天. 基于联合对角化的声信号深度卷积混合盲分离方法. 电子与信息学报, doi: 10.11999/JEIT190067

    11. [11]

      李炜李全龙刘政怡. 基于加权的K近邻线性混合显著性目标检测. 电子与信息学报, doi: 10.11999/JEIT190093

    12. [12]

      张玉磊刘祥震郎晓丽张永洁王彩芬. 一种异构混合群组签密方案的安全性分析与改进. 电子与信息学报, doi: 10.11999/JEIT190129

  • 图 1  混合ADC大规模MIMO-OFDM系统接收端模型

    图 2  上行链路用户平均速率随用户发射功率的曲线变化

    图 3  上行链路用户平均可达速率随量化精度b的曲线变化

    图 4  上行链路用户平均可达速率随$\gamma $的曲线变化

    图 5  上行链路用户平均速率随基站天线数目的曲线变化

    图 6  大规模MIMO-OFDM系统能量效率和量化精度的关系

    图 7  大规模MIMO-OFDM系统能量效率和基站天线数目的关系

    图 8  ${\rho _{\rm{u}}} $=10 dB时系统总功耗和总频谱效率之间的关系

    表 1  不同量化精度的失真因子

    b(bit)12345
    $\rho $0.36340.11750.03450.00950.0025
    下载: 导出CSV
  • 加载中
图(8)表(1)
计量
  • PDF下载量:  16
  • 文章访问数:  263
  • HTML全文浏览量:  146
  • 引证文献数: 0
文章相关
  • 通讯作者:  周涛, taozhou@bjtu.edu.cn
  • 收稿日期:  2018-12-10
  • 录用日期:  2019-02-02
  • 网络出版日期:  2019-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章