高级搜索

高形状因子可编程微波光子滤波器集成芯片

廖莎莎 廖柯 廖希 刘力

引用本文: 廖莎莎, 廖柯, 廖希, 刘力. 高形状因子可编程微波光子滤波器集成芯片[J]. 电子与信息学报, 2019, 41(11): 2606-2613. doi: 10.11999/JEIT181156 shu
Citation:  Shasha LIAO, Ke LIAO, Xi LIAO, Li LIU. Integrated Programmable Microwave Photonic Filter with High Shape-factor[J]. Journal of Electronics and Information Technology, 2019, 41(11): 2606-2613. doi: 10.11999/JEIT181156 shu

高形状因子可编程微波光子滤波器集成芯片

    作者简介: 廖莎莎: 女,1990年生,讲师,博士,研究方向为微波光子学、硅光子学、射频信号处理等;
    廖柯: 男,1963年生,研究员,硕士,研究方向为光电子技术、微波光子学等;
    廖希: 女,1988年生,讲师,博士,研究方向为电波传播、射频与微波电子学、信道建模等;
    刘力: 男,1988年生,副教授,博士,研究方向为光通信纳米器件、微波光子学、光电神经网络芯片等
    通讯作者: 廖莎莎,liaoss@cqupt.edu.cn
  • 基金项目: 国家自然科学基金(61801063, 61801062, 61805215),重庆市教育委员会科学技术研究项目(KJQN201800605), 重庆邮电大学博士启动基金(A2017-115)

摘要: 为了适应新型通信技术发展,该文提出了一种高形状因子、可编程的微波光子滤波器集成芯片。该滤波器芯片采用绝缘体上硅材料(SOI),利用有限冲击响应原理,通过调节各支路上的热光调制器,可以实现带宽可调、形状因子大于0.55的滤波曲线,以及中心频率可调、带宽可调和滤波形状可变3种不同滤波功能。该滤波器尺寸小、重量轻、灵活性高,能适用于大带宽信号处理,并能提供一种理想的信道划分方式,可广泛应用于国防领域和5G网络中。

English

    1. [1]

      HE Yutong, JIANG Yang, ZI Yuejiao, et al. Photonic microwave waveforms generation based on two cascaded single-drive Mach-Zehnder modulators[J]. Optics Express, 2018, 26(6): 7829–7841. doi: 10.1364/OE.26.007829

    2. [2]

      SOREF R A, DE LEONARDIS F, and PASSARO V M N. Tunable optical-microwave filters optimized for 100 MHz resolution[J]. Optics Express, 2018, 26(14): 18399–18411. doi: 10.1364/OE.26.018399

    3. [3]

      ZHANG Weifeng and YAO Jianping. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter[J]. Optics Letters, 2018, 43(15): 3622–3625. doi: 10.1364/OL.43.003622

    4. [4]

      ZHAI Shan, FENG Jijun, SUN Xiaoyu, et al. Vertically integrated waveguide self-coupled resonator based tunable optical filter[J]. Optics Letters, 2018, 43(15): 3766–3769. doi: 10.1364/OL.43.003766

    5. [5]

      LIU Xiaolong, YU Yuan, TANG Haitao, et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection[J]. Optics Letters, 2018, 43(6): 1359–1362. doi: 10.1364/OL.43.001359

    6. [6]

      SOREF R A, DE LEONARDIS F, and PASSARO V M N. Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices[J]. Optics Express, 2018, 26(12): 14879–14893. doi: 10.1364/OE.26.014879

    7. [7]

      ZHOU Nan, ZHENG Shuang, LONG Yun, et al. Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform[J]. Optics Express, 2018, 26(4): 4358–4369. doi: 10.1364/OE.26.004358

    8. [8]

      DANIEL H S and GOPALAKRISHNAN G K. Extended DC-20.0 GHz tunable photonic microwave filter with high out-of-band rejection[J]. Electronics Letters, 2017, 53(9): 613–614. doi: 10.1049/el.2016.4476

    9. [9]

      DING Yunhong, PU Minhao, LIU Liu, et al. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure[J]. Optics Express, 2011, 19(7): 6462–6470. doi: 10.1364/OE.19.006462

    10. [10]

      BYRNES A, PANT R, LI Enbang, et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 2012, 20(17): 18836–18845. doi: 10.1364/oe.20.018836

    11. [11]

      DENG Ye, LI Ming, HUANG Ningbo, et al. Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating[J]. IEEE Photonics Journal, 2014, 6(4): 5500908. doi: 10.1109/jphot.2014.2339327

    12. [12]

      XUE Xiaoxiao, XUAN Yi, KIM H J, et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring[J]. Journal of Lightwave Technology, 2014, 32(20): 3557–3565. doi: 10.1109/JLT.2014.2312359

    13. [13]

      JIANG Xinhong, WU Jiayang, YANG Yuxing, et al. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers[J]. Optics Express, 2016, 24(3): 2183–2188. doi: 10.1364/OE.24.002183

    14. [14]

      DENG Qingzhong, LIU Lu, ZHANG Rui, et al. Athermal and flat-topped silicon Mach-Zehnder filters[J]. Optics Express, 2016, 24(26): 29577–29582. doi: 10.1364/OE.24.029577

    15. [15]

      GAO Liang, ZHANG Jiejun, CHEN Xiangfei, et al. Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(2): 380–387. doi: 10.1109/TMTT.2013.2294601

    16. [16]

      FANDIÑO J S, MUÑOZ P, DOMÉNECH D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photonics, 2017, 11(2): 124–129. doi: 10.1038/nphoton.2016.233

    17. [17]

      YANG Wenjian, YI Xiaoke, SONG Shijie, et al. Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator[C]. The 201621st OptoElectronics and Communications Conference (OECC) Held Jointly with 2016 International Conference on Photonics in Switching (PS), Niigata, Japan, 2016: 1–3.

    18. [18]

      JIANG Fan, YU Yuan, TANG Haitao, et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity[J]. Optics Express, 2016, 24(16): 18655–18663. doi: 10.1364/OE.24.018655

    19. [19]

      MILLER I D, MORTIMORE D B, Urquhart P, et al. A Nd3+-doped cw fiber laser using all-fiber reflectors[J]. Applied Optics, 1987, 26(11): 2197–2201. doi: 10.1364/AO.26.002197

    20. [20]

      ZHANG Yi, YANG Shuyu, GUAN Hang, et al. Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator[J]. Optics Express, 2014, 22(15): 17872–17879. doi: 10.1364/OE.22.017872

    1. [1]

      雷维嘉, 杨苗苗. 时间反转多用户系统中保密和速率优化的预处理滤波器设计. 电子与信息学报, 2020, 42(5): 1253-1260.

    2. [2]

      左志斌, 常朝稳, 祝现威. 一种基于数据平面可编程的软件定义网络报文转发验证机制. 电子与信息学报, 2020, 42(5): 1110-1117.

    3. [3]

      李伟, 高嘉浩, 杜怡然, 陈韬. 一种密码专用可编程逻辑阵列的分组密码能效模型及其映射算法. 电子与信息学报, 2020, 41(0): 1-9.

    4. [4]

      赵娅, 郭嘉慧, 李盼池. 一种量子图像的中值滤波方案. 电子与信息学报, 2020, 42(0): 1-8.

    5. [5]

      武迎春, 王玉梅, 王安红, 赵贤凌. 基于边缘增强引导滤波的光场全聚焦图像融合. 电子与信息学报, 2020, 41(0): 1-9.

    6. [6]

      蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法. 电子与信息学报, 2020, 41(0): 1-7.

    7. [7]

      徐宇, 林郁, 杨海钢. FPGA双端口存储器映射优化算法. 电子与信息学报, 2020, 41(0): 1-8.

    8. [8]

      胡东伟. 5G LDPC码译码器实现. 电子与信息学报, 2020, 42(0): 1-8.

    9. [9]

      董亚非, 胡文晓, 钱梦瑶, 王越. 基于DNA适配体的荧光生物传感器. 电子与信息学报, 2020, 42(6): 1374-1382.

    10. [10]

      曾帅, 钱志华, 赵天烽, 任彦, 王育杰. 生存性条件约束下的软件定义光网络控制器部署算法. 电子与信息学报, 2020, 41(0): 1-8.

    11. [11]

      黄静琪, 胡琛, 孙山鹏, 高翔, 何兵. 一种基于异步传感器网络的空间目标分布式跟踪方法. 电子与信息学报, 2020, 42(5): 1132-1139.

    12. [12]

      刘焕淋, 杜理想, 陈勇, 胡会霞. 串扰感知的空分弹性光网络频谱转换器稀疏配置和资源分配方法. 电子与信息学报, 2020, 42(7): 1718-1725.

    13. [13]

      段永强, 王振占, 张升伟. 风云三号(D)气象卫星微波湿温度计系统建模和仿真. 电子与信息学报, 2020, 42(6): 1549-1556.

    14. [14]

      宋广南, 卢海梁, 李浩, 李一楠, 郎量, 董思乔, 李鹏飞, 吕容川. 复杂天气及海风对天基被动干涉微波辐射无源探测系统性能的影响. 电子与信息学报, 2020, 42(0): 1-8.

    15. [15]

      李一楠, 张林让, 卢海梁, 李鹏飞, 吕容川, 李浩, 付庸杰, 邱尔雅, 唐世阳. 基于地基综合孔径微波辐射计的空中目标无源探测技术研究. 电子与信息学报, 2020, 41(0): 1-8.

  • 图 1  微波光子滤波器系统结构和各节点频谱示意图

    图 2  微波光子滤波器芯片结构示意图

    图 3  Sagnac反射镜结构示意图

    图 4  带宽可调、高形状因子滤波器仿真结果

    图 5  中心频率可调滤波器和滤波形状可变滤波器仿真结果

    表 1  带宽可调、高形状因子滤波器幅度调制阵列、相位调制阵列取值及相关特性参数

    编号12345678
    幅度调制阵列${\alpha _1}$0.380.470.380.450.580.801.001.00
    ${\alpha _2}$0.650.830.851.001.001.000.800.35
    ${\alpha _3}$0.871.001.000.920.440.020.340.27
    ${\alpha _4}$1.000.890.660.200.290.310.020.20
    ${\alpha _5}$1.000.540.080.350.180.200.140.13
    ${\alpha _6}$0.870.120.310.270.200.040.170.07
    ${\alpha _7}$0.650.190.290.160.060.160.110.01
    ${\alpha _8}$0.380.280.030.200.150.090.010.03
    相位调制阵列${\phi _1}$00.04${\text{π}}$0.97${\text{π}}$0.91${\text{π}}$0.98${\text{π}}$0.69${\text{π}}$0.98${\text{π}}$0.98${\text{π}}$
    ${\phi _2}$0.02${\text{π}}$0.11${\text{π}}$0.98${\text{π}}$0.92${\text{π}}$00.76${\text{π}}$00
    ${\phi _3}$0.03${\text{π}}$0.19${\text{π}}$00.94${\text{π}}$0.02${\text{π}}$0.37${\text{π}}$0.52${\text{π}}$0.52${\text{π}}$
    ${\phi _4}$0.05${\text{π}}$0.27${\text{π}}$0.02${\text{π}}$0.95${\text{π}}$0.53${\text{π}}$0.43${\text{π}}$0.03${\text{π}}$0.03${\text{π}}$
    ${\phi _5}$0.06${\text{π}}$0.35${\text{π}}$0.03${\text{π}}$0.47${\text{π}}$0.55${\text{π}}$00.05${\text{π}}$0.55${\text{π}}$
    ${\phi _6}$0.08${\text{π}}$0.42${\text{π}}$0.55${\text{π}}$0.48${\text{π}}$0.06${\text{π}}$0.09${\text{π}}$0.56${\text{π}}$0.06${\text{π}}$
    ${\phi _7}$0.09${\text{π}}$00.56${\text{π}}$00.08${\text{π}}$0.66${\text{π}}$0.08${\text{π}}$0.58${\text{π}}$
    ${\phi _8}$0.10${\text{π}}$0.08${\text{π}}$0.58${\text{π}}$0.02${\text{π}}$0.59${\text{π}}$0.23${\text{π}}$0.59${\text{π}}$0.59${\text{π}}$
    3 dB带宽(GHz)1.342.583.294.405.536.587.608.64
    形状因子0.550.640.680.750.800.830.850.88
    下载: 导出CSV

    表 2  滤波形状可变滤波器幅度调制阵列、相位调制阵列取值和仿真所得曲线与理想曲线的平均误差

    滤波曲线类型三角形锯齿形高斯形超高斯形
    幅度调制系数${\alpha _1}$0.450.540.100.15
    ${\alpha _2}$1.001.000.410.60
    ${\alpha _3}$0.710.80.831.00
    ${\alpha _4}$0.130.431.000.83
    ${\alpha _5}$0.040.350.740.32
    ${\alpha _6}$0.080.250.350.06
    ${\alpha _7}$0.010.210.120.01
    ${\alpha _8}$0.020.170.030.02
    相位调制系数(${\text{π}}$)${\phi _1}$0000.98
    ${\phi _2}$0.020.100.020
    ${\phi _3}$0.030.230.030.03
    ${\phi _4}$0.050.470.050.05
    ${\phi _5}$0.060.750.060.06
    ${\phi _6}$0.080.030.080.02
    ${\phi _7}$0.090.320.090.74
    ${\phi _8}$0.110.590.110.66
    平均误差(%)0.715.760.070.10
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  38
  • 文章访问数:  1824
  • HTML全文浏览量:  604
文章相关
  • 通讯作者:  廖莎莎, liaoss@cqupt.edu.cn
  • 收稿日期:  2018-12-17
  • 录用日期:  2019-07-22
  • 网络出版日期:  2019-08-01
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章