高级搜索

高形状因子可编程微波光子滤波器集成芯片

廖莎莎 廖柯 廖希 刘力

引用本文: 廖莎莎, 廖柯, 廖希, 刘力. 高形状因子可编程微波光子滤波器集成芯片[J]. 电子与信息学报, doi: 10.11999/JEIT181156 shu
Citation:  Shasha LIAO, Ke LIAO, Xi LIAO, Li LIU. Integrated Programmable Microwave Photonic Filter with High Shape-factor[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181156 shu

高形状因子可编程微波光子滤波器集成芯片

    作者简介: 廖莎莎: 女,1990年生,讲师,博士,研究方向为微波光子学、硅光子学、射频信号处理等;
    廖柯: 男,1963年生,研究员,硕士,研究方向为光电子技术、微波光子学等;
    廖希: 女,1988年生,讲师,博士,研究方向为电波传播、射频与微波电子学、信道建模等;
    刘力: 男,1988年生,副教授,博士,研究方向为光通信纳米器件、微波光子学、光电神经网络芯片等
    通讯作者: 廖莎莎,liaoss@cqupt.edu.cn
  • 基金项目: 国家自然科学基金(61801063, 61801062, 61805215),重庆市教育委员会科学技术研究项目(KJQN201800605), 重庆邮电大学博士启动基金(A2017-115)

摘要: 为了适应新型通信技术发展,该文提出了一种高形状因子、可编程的微波光子滤波器集成芯片。该滤波器芯片采用绝缘体上硅材料(SOI),利用有限冲击响应原理,通过调节各支路上的热光调制器,可以实现带宽可调、形状因子大于0.55的滤波曲线,以及中心频率可调、带宽可调和滤波形状可变3种不同滤波功能。该滤波器尺寸小、重量轻、灵活性高,能适用于大带宽信号处理,并能提供一种理想的信道划分方式,可广泛应用于国防领域和5G网络中。

English

    1. [1]

      HE Yutong, JIANG Yang, ZI Yuejiao, et al. Photonic microwave waveforms generation based on two cascaded single-drive Mach-Zehnder modulators[J]. Optics Express, 2018, 26(6): 7829–7841. doi: 10.1364/OE.26.007829

    2. [2]

      SOREF R A, DE LEONARDIS F, and PASSARO V M N. Tunable optical-microwave filters optimized for 100 MHz resolution[J]. Optics Express, 2018, 26(14): 18399–18411. doi: 10.1364/OE.26.018399

    3. [3]

      ZHANG Weifeng and YAO Jianping. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter[J]. Optics Letters, 2018, 43(15): 3622–3625. doi: 10.1364/OL.43.003622

    4. [4]

      ZHAI Shan, FENG Jijun, SUN Xiaoyu, et al. Vertically integrated waveguide self-coupled resonator based tunable optical filter[J]. Optics Letters, 2018, 43(15): 3766–3769. doi: 10.1364/OL.43.003766

    5. [5]

      LIU Xiaolong, YU Yuan, TANG Haitao, et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection[J]. Optics Letters, 2018, 43(6): 1359–1362. doi: 10.1364/OL.43.001359

    6. [6]

      SOREF R A, DE LEONARDIS F, and PASSARO V M N. Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices[J]. Optics Express, 2018, 26(12): 14879–14893. doi: 10.1364/OE.26.014879

    7. [7]

      ZHOU Nan, ZHENG Shuang, LONG Yun, et al. Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform[J]. Optics Express, 2018, 26(4): 4358–4369. doi: 10.1364/OE.26.004358

    8. [8]

      DANIEL H S and GOPALAKRISHNAN G K. Extended DC-20.0 GHz tunable photonic microwave filter with high out-of-band rejection[J]. Electronics Letters, 2017, 53(9): 613–614. doi: 10.1049/el.2016.4476

    9. [9]

      DING Yunhong, PU Minhao, LIU Liu, et al. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure[J]. Optics Express, 2011, 19(7): 6462–6470. doi: 10.1364/OE.19.006462

    10. [10]

      BYRNES A, PANT R, LI Enbang, et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 2012, 20(17): 18836–18845. doi: 10.1364/oe.20.018836

    11. [11]

      DENG Ye, LI Ming, HUANG Ningbo, et al. Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating[J]. IEEE Photonics Journal, 2014, 6(4): 5500908. doi: 10.1109/jphot.2014.2339327

    12. [12]

      XUE Xiaoxiao, XUAN Yi, KIM H J, et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring[J]. Journal of Lightwave Technology, 2014, 32(20): 3557–3565. doi: 10.1109/JLT.2014.2312359

    13. [13]

      JIANG Xinhong, WU Jiayang, YANG Yuxing, et al. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers[J]. Optics Express, 2016, 24(3): 2183–2188. doi: 10.1364/OE.24.002183

    14. [14]

      DENG Qingzhong, LIU Lu, ZHANG Rui, et al. Athermal and flat-topped silicon Mach-Zehnder filters[J]. Optics Express, 2016, 24(26): 29577–29582. doi: 10.1364/OE.24.029577

    15. [15]

      GAO Liang, ZHANG Jiejun, CHEN Xiangfei, et al. Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(2): 380–387. doi: 10.1109/TMTT.2013.2294601

    16. [16]

      FANDIÑO J S, MUÑOZ P, DOMÉNECH D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photonics, 2017, 11(2): 124–129. doi: 10.1038/nphoton.2016.233

    17. [17]

      YANG Wenjian, YI Xiaoke, SONG Shijie, et al. Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator[C]. The 201621st OptoElectronics and Communications Conference (OECC) Held Jointly with 2016 International Conference on Photonics in Switching (PS), Niigata, Japan, 2016: 1–3.

    18. [18]

      JIANG Fan, YU Yuan, TANG Haitao, et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity[J]. Optics Express, 2016, 24(16): 18655–18663. doi: 10.1364/OE.24.018655

    19. [19]

      MILLER I D, MORTIMORE D B, Urquhart P, et al. A Nd3+-doped cw fiber laser using all-fiber reflectors[J]. Applied Optics, 1987, 26(11): 2197–2201. doi: 10.1364/AO.26.002197

    20. [20]

      ZHANG Yi, YANG Shuyu, GUAN Hang, et al. Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator[J]. Optics Express, 2014, 22(15): 17872–17879. doi: 10.1364/OE.22.017872

    1. [1]

      庄陵, 关鹃, 马靖怡, 王光宇. 一种基于结构优化的FIR滤波器舍入噪声性能改进方案. 电子与信息学报,

    2. [2]

      陈树新, 洪磊, 吴昊, 刘卓崴, 岳龙华. 学生 t 混合势均衡多目标多伯努利滤波器. 电子与信息学报,

    3. [3]

      杨利超, 邢孟道, 孙光才, 王安乐, 盛佳恋. 一种微波光子雷达ISAR成像新方法. 电子与信息学报,

    4. [4]

      王巍, 周凯利, 王伊昌, 王广, 袁军. 基于快速滤波算法的卷积神经网络加速器设计. 电子与信息学报,

    5. [5]

      陈潇翔, 邢孟道, 孙光才, 景国彬. 一种超宽带10 GHz微波光子雷达包络与相位联合运动误差估计方法. 电子与信息学报,

    6. [6]

      李芳苑, 陈墨, 武花干. 忆阻高通滤波电路准周期与混沌环面簇发振荡及慢通道效应. 电子与信息学报,

    7. [7]

      何灏, 易卫东, 陈永锐, 王喆. 基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化. 电子与信息学报,

    8. [8]

      侯志强, 王帅, 廖秀峰, 余旺盛, 王姣尧, 陈传华. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪. 电子与信息学报,

    9. [9]

      刘江义, 王春平. 基于双马尔科夫链的势概率假设密度滤波. 电子与信息学报,

    10. [10]

      耿友林, 解成博, 尹川, 郭兰图, 王先义. 基于卡尔曼滤波的接收信号强度指示差值定位算法. 电子与信息学报,

    11. [11]

      王守华, 陆明炽, 孙希延, 纪元法, 胡丁梅. 基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法. 电子与信息学报,

    12. [12]

      王宗原, 周卫东. 学生t量测分布下鲁棒粒子滤波算法的设计与实现. 电子与信息学报,

    13. [13]

      朱子尧, 韩树平, 郭正东, 刘建波. 乘性噪声背景下基于非线性渐消滤波的单信标测距定位算法. 电子与信息学报,

    14. [14]

      张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪. 电子与信息学报,

    15. [15]

      王进, 杜彪, 孙立杰, 解磊. 宽带高性能四脊波导圆极化器设计. 电子与信息学报,

    16. [16]

      陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究. 电子与信息学报,

    17. [17]

      杨若男, 张伟涛, 楼顺天. 基于平行因子分析的SIMO-OFDM系统盲信道与符号联合估计算法. 电子与信息学报,

    18. [18]

      孟令博, 耿修瑞. 基于协峭度张量的高光谱图像异常检测. 电子与信息学报,

    19. [19]

      刘毅, 吴炯, 杨普, 南海涵, 张海林. 面向OFDM的同时同频全双工双向高谱效中继方案. 电子与信息学报,

    20. [20]

      张鹤玖, 余宁梅, 吕楠, 刘尕. 一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器. 电子与信息学报,

  • 图 1  微波光子滤波器系统结构和各节点频谱示意图

    图 2  微波光子滤波器芯片结构示意图

    图 3  Sagnac反射镜结构示意图

    图 4  带宽可调、高形状因子滤波器仿真结果

    图 5  中心频率可调滤波器和滤波形状可变滤波器仿真结果

    表 1  带宽可调、高形状因子滤波器幅度调制阵列、相位调制阵列取值及相关特性参数

    编号12345678
    幅度调制阵列${\alpha _1}$0.380.470.380.450.580.801.001.00
    ${\alpha _2}$0.650.830.851.001.001.000.800.35
    ${\alpha _3}$0.871.001.000.920.440.020.340.27
    ${\alpha _4}$1.000.890.660.200.290.310.020.20
    ${\alpha _5}$1.000.540.080.350.180.200.140.13
    ${\alpha _6}$0.870.120.310.270.200.040.170.07
    ${\alpha _7}$0.650.190.290.160.060.160.110.01
    ${\alpha _8}$0.380.280.030.200.150.090.010.03
    相位调制阵列${\phi _1}$00.04${\text{π}}$0.97${\text{π}}$0.91${\text{π}}$0.98${\text{π}}$0.69${\text{π}}$0.98${\text{π}}$0.98${\text{π}}$
    ${\phi _2}$0.02${\text{π}}$0.11${\text{π}}$0.98${\text{π}}$0.92${\text{π}}$00.76${\text{π}}$00
    ${\phi _3}$0.03${\text{π}}$0.19${\text{π}}$00.94${\text{π}}$0.02${\text{π}}$0.37${\text{π}}$0.52${\text{π}}$0.52${\text{π}}$
    ${\phi _4}$0.05${\text{π}}$0.27${\text{π}}$0.02${\text{π}}$0.95${\text{π}}$0.53${\text{π}}$0.43${\text{π}}$0.03${\text{π}}$0.03${\text{π}}$
    ${\phi _5}$0.06${\text{π}}$0.35${\text{π}}$0.03${\text{π}}$0.47${\text{π}}$0.55${\text{π}}$00.05${\text{π}}$0.55${\text{π}}$
    ${\phi _6}$0.08${\text{π}}$0.42${\text{π}}$0.55${\text{π}}$0.48${\text{π}}$0.06${\text{π}}$0.09${\text{π}}$0.56${\text{π}}$0.06${\text{π}}$
    ${\phi _7}$0.09${\text{π}}$00.56${\text{π}}$00.08${\text{π}}$0.66${\text{π}}$0.08${\text{π}}$0.58${\text{π}}$
    ${\phi _8}$0.10${\text{π}}$0.08${\text{π}}$0.58${\text{π}}$0.02${\text{π}}$0.59${\text{π}}$0.23${\text{π}}$0.59${\text{π}}$0.59${\text{π}}$
    3 dB带宽(GHz)1.342.583.294.405.536.587.608.64
    形状因子0.550.640.680.750.800.830.850.88
    下载: 导出CSV

    表 2  滤波形状可变滤波器幅度调制阵列、相位调制阵列取值和仿真所得曲线与理想曲线的平均误差

    滤波曲线类型三角形锯齿形高斯形超高斯形
    幅度调制系数${\alpha _1}$0.450.540.100.15
    ${\alpha _2}$1.001.000.410.60
    ${\alpha _3}$0.710.80.831.00
    ${\alpha _4}$0.130.431.000.83
    ${\alpha _5}$0.040.350.740.32
    ${\alpha _6}$0.080.250.350.06
    ${\alpha _7}$0.010.210.120.01
    ${\alpha _8}$0.020.170.030.02
    相位调制系数${\phi _1}$0000.98${\text{π}}$
    ${\phi _2}$0.02${\text{π}}$0.10${\text{π}}$0.02${\text{π}}$0
    ${\phi _3}$0.03${\text{π}}$0.23${\text{π}}$0.03${\text{π}}$0.03${\text{π}}$
    ${\phi _4}$0.05${\text{π}}$0.47${\text{π}}$0.05${\text{π}}$0.05${\text{π}}$
    ${\phi _5}$0.06${\text{π}}$0.75${\text{π}}$0.06${\text{π}}$0.06${\text{π}}$
    ${\phi _6}$0.08${\text{π}}$0.03${\text{π}}$0.08${\text{π}}$0.02${\text{π}}$
    ${\phi _7}$0.09${\text{π}}$0.32${\text{π}}$0.09${\text{π}}$0.74${\text{π}}$
    ${\phi _8}$0.11${\text{π}}$0.59${\text{π}}$0.11${\text{π}}$0.66${\text{π}}$
    平均误差0.71%5.76%0.07%0.10%
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  8
  • 文章访问数:  698
  • HTML全文浏览量:  160
文章相关
  • 通讯作者:  廖莎莎, liaoss@cqupt.edu.cn
  • 收稿日期:  2019-12-17
  • 录用日期:  2019-07-22
  • 网络出版日期:  2019-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章