高级搜索

一种低副瓣无混叠的线性调频信号时频分析方法

刘会杰 高新海 郭汝江

引用本文: 刘会杰, 高新海, 郭汝江. 一种低副瓣无混叠的线性调频信号时频分析方法[J]. 电子与信息学报, 2019, 41(11): 2614-2622. doi: 10.11999/JEIT181190 shu
Citation:  Huijie LIU, Xinhai GAO, Rujiang GUO. A Time-frequency Analysis Method for Linear Frequency Modulation Signal with Low Sidelobe and Nonaliasing Property[J]. Journal of Electronics and Information Technology, 2019, 41(11): 2614-2622. doi: 10.11999/JEIT181190 shu

一种低副瓣无混叠的线性调频信号时频分析方法

    作者简介: 刘会杰: 男,1972年生,博士,研究员,博士生导师,研究方向为卫星移动通信系统理论与通信系统设计;
    高新海: 男,1995年生,硕士生,研究方向为复杂电磁环境下的时频分析;
    郭汝江: 男,1977年生,博士,研究员,研究方向为新体制雷达、保密通信、无源定位
    通讯作者: 高新海,gxh777@mail.ustc.edu.cn
  • 基金项目: 国家自然科学基金(91738201),上海市青年科技英才扬帆计划(17YF1418200)

摘要: 作为通信与勘探中广泛使用的一类信号,线性调频信号的参数分析经常采用基于Wigner-Ville分布(WVD)的时频分析方法。该方法具有高时频分辨率,但在交叉项、高副瓣以及频谱混叠问题上存在缺陷。该文提出一种名为空间变迹重排Wigner-Ville分布(SVA-rWVD)的时频分析方法,结合空间变迹技术(SVA)的副瓣抑制能力及短时傅里叶变换(STFT)的无混叠无交叉项特性,得到一个新的时频分布。基于单分量和多分量线性调频信号的仿真实验结果表明,该方法得到的时频分布可以降低副瓣水平至–40 dB以下同时消除交叉项及频谱混叠现象。

English

    1. [1]

      YI Wei, CHEN Zhenhua, HOSEINNEZHAD R, et al. Joint estimation of location and signal parameters for an LFM emitter[J]. Signal Processing, 2017, 134: 100–112. doi: 10.1016/j.sigpro.2016.11.014

    2. [2]

      李秀坤, 吴玉双. 多分量线性调频信号的Wigner-Ville分布交叉项去除[J]. 电子学报, 2017, 45(2): 315–320. doi: 10.3969/j.issn.0372-2112.2017.02.008
      LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals[J]. Acta Electronica Sinica, 2017, 45(2): 315–320. doi: 10.3969/j.issn.0372-2112.2017.02.008

    3. [3]

      KUMAR R, ZHAO Wei, and SINGH V. Joint time-frequency analysis of seismic signals: A critical review[J]. Structural Durability & Health Monitoring, 2018, 12(2): 65–83. doi: 10.3970/sdhm.2018.02329

    4. [4]

      邹红星, 戴琼海, 李衍达, 等. 不含交叉项干扰且具有WVD聚集性的时频分布之不存在性[J]. 中国科学: E辑, 2002, 45(3): 174–180. doi: 10.1360/02yf9015
      ZOU Hongxing, DAI Qionghai, LI Yanda, et al. Nonexistence of cross-term free time-frequency distribution with concentration of Wigner-Ville distribution[J]. Science in China Series F:Information Sciences, 2002, 45(3): 174–180. doi: 10.1360/02yf9015

    5. [5]

      BOASHASH B, ALI KHAN N, and BEN-JABEUR T. Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review[J]. Digital Signal Processing, 2015, 40: 1–30. doi: 10.1016/j.dsp.2014.12.015

    6. [6]

      赵培洪, 平殿发, 邓兵, 等. 魏格纳-维尔分布交叉项抑制方法综述[J]. 探测与控制学报, 2010, 32(1): 23–29. doi: 10.3969/j.issn.1008-1194.2010.01.006
      ZHAO Peihong, PING Dianfa, DENG Bing, et al. Review of cross-terms suppression methods in Wigner-Ville distribution[J]. Journal of Detection &Control, 2010, 32(1): 23–29. doi: 10.3969/j.issn.1008-1194.2010.01.006

    7. [7]

      ALI KHAN N and SANDSTEN M. Time-frequency image enhancement based on interference suppression in Wigner-Ville distribution[J]. Signal Processing, 2016, 127: 80–85. doi: 10.1016/j.sigpro.2016.02.027

    8. [8]

      REN Huorong, REN An, and LI Zhiwu. A new strategy for the suppression of cross-terms in pseudo Wigner-Ville distribution[J]. Signal, Image and Video Processing, 2016, 10(1): 139–144. doi: 10.1007/s11760-014-0713-9

    9. [9]

      BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distributions for the analysis of nonstationary multicomponent signals using directional compact kernels[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2701–2713. doi: 10.1109/TSP.2017.2669899

    10. [10]

      PACHORI R B and NISHAD A. Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform[J]. Signal Processing, 2016, 120: 288–304. doi: 10.1016/j.sigpro.2015.07.026

    11. [11]

      王见, 李金同, 卢华玲, 等. 采用STFT-Wigner变换抑制Wigner-Ville分布交叉项[J]. 重庆大学学报, 2013, 36(8): 15–18. doi: 10.11835/j.jssn.1000-582X.2013.08.003
      WANG Jian, LI Jintong, LU Hualing, et al. Using STFT-Wigner transform to suppress the cross terms in Wigner-Ville distribution[J]. Journal of Chongqing University, 2013, 36(8): 15–18. doi: 10.11835/j.jssn.1000-582X.2013.08.003

    12. [12]

      STANKWITZ H C, DALLAIRE R J, and FIENUP J R. Nonlinear apodization for sidelobe control in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 267–279. doi: 10.1109/7.366309

    13. [13]

      GUO Liang, YIN Hongfei, ZHOU Yu, et al. A novel sidelobe-suppression algorithm for airborne synthetic aperture imaging ladar[J]. Optics & Laser Technology, 2019, 111: 714–719. doi: 10.1016/j.optlastec.2018.09.005

    14. [14]

      徐光耀, 刘永泽, 许小剑. 基于变迹滤波的MIMO-SAR图像分辨率增强技术[J]. 北京航空航天大学学报, 2017, 43(7): 1313–1320. doi: 10.13700/j.bh.1001-5965.2016.0514
      XU Guangyao, LIU Yongze, and XU Xiaojian. Enhanced resolution in MIMO-SAR imaging using apodization[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(7): 1313–1320. doi: 10.13700/j.bh.1001-5965.2016.0514

    15. [15]

      NI Chong, WANG Yanfei, XU Xianghui, et al. A super-resolution algorithm for synthetic aperture radar based on modified spatially variant apodization[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 355–364. doi: 10.1007/s11433-010-4186-8

    16. [16]

      SARKAR B, PANIGRAHI R K, and MISHRA A K. Sidelobe suppression in Wigner distribution using non-linear apodization[C]. Proceedings of 2009 Annual IEEE India Conference, Gujarat, India, 2009: 1–4. doi: 10.1109/INDCON.2009.5409393.

    17. [17]

      SUN Kewen, ZHANG Min, and YANG Dongkai. A new interference detection method based on joint hybrid time-frequency distribution for GNSS receivers[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9057–9071. doi: 10.1109/TVT.2016.2515718

    18. [18]

      刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J]. 电子与信息学报, 2015, 37(5): 1135–1140. doi: 10.11999/JEIT140876
      LIU Ying, CHEN Dianren, CHEN Lei, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1135–1140. doi: 10.11999/JEIT140876

    19. [19]

      张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
      ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750

  • 图 1  单分量LFM信号的时频分析结果对比

    图 2  时间切片比较结果(取对数进行分析)

    图 3  SVA-rWVD方法消除混叠现象的原理

    图 4  多分量LFM信号的时频分析结果对比

    图 5  时间切片比较结果(取对数进行分析)

    图 6  多分量LFM信号的时频分析结果对比

    图 7  时间切片比较结果(取对数进行分析)

    图 8  不同信噪比下瞬时频率估计的均方根误差

    表 1  仿真参数设置

    参数名称单分量LFM(图1)多分量LFM(图4)多分量LFM(图6)
    脉冲宽度(μs)102410241204
    带宽(MHz)111
    采样率(MHz)111
    时间切片(μs)400500300
    频率范围(kHz)–500~5003个分量均为–500~500,且时间间隔相同–300~–100
    0~300
    –500~500
    下载: 导出CSV
  • 加载中
图(8)表(1)
计量
  • PDF下载量:  29
  • 文章访问数:  703
  • HTML全文浏览量:  791
文章相关
  • 通讯作者:  高新海, gxh777@mail.ustc.edu.cn
  • 收稿日期:  2018-12-28
  • 录用日期:  2019-05-27
  • 网络出版日期:  2019-08-23
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章