高级搜索

一种方向插值预测变长编码的帧存有损压缩算法

罗瑜 张珍珍

引用本文: 罗瑜, 张珍珍. 一种方向插值预测变长编码的帧存有损压缩算法[J]. 电子与信息学报, doi: 10.11999/JEIT181195 shu
Citation:  Yu LUO, Zhenzhen ZHANG. A Lossy Frame Memory Compression Algorithm Using Directional Interpolation Prediction Variable Length Coding[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181195 shu

一种方向插值预测变长编码的帧存有损压缩算法

    作者简介: 罗瑜: 女,1984年生,副教授,研究方向为图形图像处理;
    张珍珍: 女,1984年生,博士生,研究方向图形图像处理
    通讯作者: 罗瑜,luoyu2010@163.com
  • 基金项目: 国家高技术研究发展计划(863计划)(2015M16903)

摘要: 为了提高帧存储的压缩性能,该文提出一种基于方向插值预测变长编码(DIPVLC)的帧存有损压缩算法。首先根据自适应纹理方向插值获取参考像素,从而得到预测残差,然后优化率失真模型对预测残差进行量化,最后通过游程哥伦布算法对量化残差进行变长编码。实验结果显示,与内容感知自适应量化(CAAQ)的帧存压缩算法相比,该文算法不但PSNR下降更少,而且压缩率提高了10.05%,同时编码时间减少了10.62%。

English

    1. [1]

      ITU-T Study Group 16. Recommendation ITU-T h.265 High efficiency video coding[S]. Geneva: ITU, 2014.

    2. [2]

      FAN Yibo, SHANG Qing, and ZENG Xiaoyang. In-block prediction-based mixed lossy and lossless reference frame recompression for next-generation video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 112–124. doi: 10.1109/TCSVT.2014.2329353

    3. [3]

      LI Weigang. Optimize genomics data compression with hardware accelerator[C]. Proceedings of 2017 Data Compression Conference (DCC), Snowbird, USA, 2017: 446.

    4. [4]

      GUPTE A D, AMRUTUR B, MEHENDALE M M, et al. Memory bandwidth and power reduction using lossy reference frame compression in video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(2): 225–230. doi: 10.1109/TCSVT.2011.2105599

    5. [5]

      QIAN Dong and LI Bing. A lossless compression method for RTK in hardware compressors[C]. Proceedings of 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), Taiwan, China, 2017: 1–2.

    6. [6]

      MA Yanzhuo and KANG Lijuan. Adaptive granularity selection in reference picture memory compression[C]. Proceedings of the 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Kuala Lumpur, Malaysia, 2015: 1158–1161.

    7. [7]

      LEE Y, RHEE C E, LEE H J. A new frame recompression algorithm integrated with h.264 video compression[C]. Proceedings of 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 1621–1624.

    8. [8]

      SAMPAIO F, ZATT B, SHAFIQUE M, et al. Content-adaptive reference frame compression based on intra-frame prediction for multiview video coding[C]. Proceedings of 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 1831–1835.

    9. [9]

      BAGA Y, GHAFFARI F, DECLERCQ D, et al. Reduction of frames storage size in AFDX reception end-system using a lossless compression algorithm[C]. Proceedings of 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), Saint Petersburg, USA, 2017: 1–8.

    10. [10]

      WILLÈME A, MACQ B, DESCAMPE A, et al. JPEG XS-based frame buffer compression inside HEVC for power-aware video compression[C]. Proceedings of 2018 IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 3598–3602.

    11. [11]

      ZHOU Xin, LIAN Xiaocong, ZHOU Wei, et al. A low power lossy frame memory recompression algorithm[C]. Proceedings of 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, South Korea, 2016: 1–4.

    12. [12]

      CHEN Qiubo, SUN Hongbin, and ZHENG Nanning. Worst case driven display frame compression for energy-efficient ultra-HD display processing[J]. IEEE Transactions on Multimedia, 2018, 20(5): 1113–1125. doi: 10.1109/tmm.2017.2762004

    13. [13]

      LIAN Xiaocong, LIU Zhenyu, ZHOU Wei, et al. Parallel content-aware adaptive quantization-oriented lossy frame memory recompression for HEVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(4): 958–971. doi: 10.1109/TCSVT.2016.2638857

    14. [14]

      WIEGAND T and GIROD B. Lagrange multiplier selection in hybrid video coder control[C]. Proceedings of 2001 International Conference on Image Processing, Thessaloniki, Greece, 2001: 542–545.

    15. [15]

      ZHANG Fan and BULL D R. Rate-distortion optimization using adaptive lagrange multipliers[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 20(3): 150–153. doi: 10.1109/TCSVT.2018.2873837

    16. [16]

      International Telecommunication Union. HM16.8[EB/OL]. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftwar.2018.12.1.

    1. [1]

      王刚, 彭华, 唐永旺. 破损压缩文件的修复还原. 电子与信息学报,

    2. [2]

      谌德荣, 吕海波, 李秋富, 宫久路, 厉智强, 韩肖君. 分块压缩感知的全变差正则化重构算法. 电子与信息学报,

    3. [3]

      李林, 王林, 韩红霞, 姬红兵, 江莉. 自适应时频同步压缩算法研究. 电子与信息学报,

    4. [4]

      张玉磊, 刘祥震, 郎晓丽, 张永洁, 陈文娟, 王彩芬. 云存储环境下多服务器的密钥聚合可搜索加密方案. 电子与信息学报,

    5. [5]

      陈书贞, 张祎俊, 练秋生. 基于多尺度稠密残差网络的JPEG压缩伪迹去除方法. 电子与信息学报,

    6. [6]

      赵辉, 张静, 张乐, 刘莹莉, 张天骐. 基于非局部低秩和加权全变分的图像压缩感知重构算法. 电子与信息学报,

    7. [7]

      余东平, 郭艳, 李宁, 刘杰, 杨思星. 基于多维测量信息的压缩感知多目标无源被动定位算法. 电子与信息学报,

    8. [8]

      余东平, 郭艳, 李宁, 杨思星, 宋晓祥. 压缩感知多目标无源定位中的字典适配方法. 电子与信息学报,

    9. [9]

      赵杨, 尚朝轩, 韩壮志, 韩宁, 解辉. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰. 电子与信息学报,

    10. [10]

      张建中, 穆贺强, 文树梁, 李彦兵, 高红卫. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法. 电子与信息学报,

    11. [11]

      蒋莹, 王冰切, 韩俊, 何翼. 基于分布式压缩感知的宽带欠定信号DOA估计. 电子与信息学报,

    12. [12]

      王晓晗, 王韬, 李雄伟, 张阳, 黄长阳. 一种基于压缩边界Fisher分析的硬件木马检测方法. 电子与信息学报,

    13. [13]

      吴昭军, 张立民, 钟兆根, 于柯远, 杨芸丞. 低信噪比下归零Turbo码码长及其帧同步识别. 电子与信息学报,

    14. [14]

      田子建, 贺方圆. 一种基于分布式压缩感知的矿井目标指纹数据库建立方法. 电子与信息学报,

    15. [15]

      盖建新, 杜昊辰, 刘琦, 童子权. 基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法. 电子与信息学报,

    16. [16]

      邓红辉, 闫辉, 肖瑞, 陈红梅. 一种全数字前馈式时间交织模数转换器时间误差后台校准算法. 电子与信息学报,

    17. [17]

      路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法. 电子与信息学报,

    18. [18]

      邹应全, 吴太龙, 彭榆淞, 孙一航, 刘宜罡, 张翠芳. 基于线下估计和线上补偿的时间交错采样ADC失配误差补偿方法. 电子与信息学报,

    19. [19]

      杨文哲, 杨宏雷, 王学运, 张升康, 赵环, 杨军, 冯克明. 高精度光纤时间频率一体化传递. 电子与信息学报,

    20. [20]

      王莉, 曹一凡, 杜高明, 刘冠宇, 王晓蕾, 张多利. 一种低延迟的3维高效视频编码中深度建模模式编码器. 电子与信息学报,

  • 图 1  自适应预测坐标示意图

    图 2  方向插值预测图

    图 3  游程哥伦布编码图

    图 4  thr测试对比

    表 1  哥伦布商码表

    QRk=0k=1k=2k=3
    00000000000
    ±110010010001
    ±21101000100010
    ±311101010110100
    ±4111100110010000101
    ±5111101110110010110
    $\vdots $$\vdots $$\vdots $$\vdots $$\vdots $
    下载: 导出CSV

    表 2  哥伦布商码表

    QRk=0k=1k=2k=3
    00000000000
    ±110010010001
    ±21101000100010
    ±311101010110011
    ±41111*110010000100
    ±51101*10010110
    ±61010
    ±71011*$ \vdots $
    $ \vdots $
    $ \vdots $
    ±151111*
    下载: 导出CSV

    表 3  本文算法模块性能提升对比

    序列CR(%)${\rm{\Delta }} {\rm{PSNR(dB)}}$RET 模块/CAAQ(%)
    CAAQ预测率失真编码CAAQ预测率失真编码预测率失真编码
    bluesky80.2683.6985.6486.25–0.05–0.05–0.04–0.0499.5698.1585.34
    traffic70.9573.1177.6476.61–0.07–0.06–0.03–0.0599.12100.5490.12
    riverbed60.2161.2167.2165.21–0.09–0.09–0.04–0.0598.89101.5195.14
    平均70.4772.6776.8376.02–0.07–0.07–0.04–0.0599.19100.0790.20
    下载: 导出CSV

    表 4  本文算法与CAAQ算法压缩的性能对比

    序列CR(%)${\rm{\Delta }} {\rm{PSNR(dB)}}$RET
    CAAQ本文算法CAAQ本文算法本文/CAAQ(%)
    Tennis78.2193.23–0.02–70.0186.00
    bluesky80.2691.45–0.05–0.0385.21
    Johnny81.3993.56–0.05–0.0284.25
    crowdrun71.2179.56–0.06–0.0189.15
    traffic70.9582.10–0.07–0.0289.25
    stockholm70.1279.12–0.08–0.0388.56
    racehorses64.3673.14–0.06–0.0192.31
    riverbed60.2168.52–0.09–0.0296.14
    mobcal59.7667.14–0.08–0.0393.54
    平均70.7280.87–0.06–0.0289.38
    下载: 导出CSV
  • 加载中
图(4)表(4)
计量
  • PDF下载量:  9
  • 文章访问数:  482
  • HTML全文浏览量:  217
文章相关
  • 通讯作者:  罗瑜, luoyu2010@163.com
  • 收稿日期:  2019-01-03
  • 录用日期:  2019-05-20
  • 网络出版日期:  0201-05-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章