高级搜索

一种快速稳健的致密焦面阵列馈源设计方法

何山红 纪萌茜 解良玉 范瑾 范冲

引用本文: 何山红, 纪萌茜, 解良玉, 范瑾, 范冲. 一种快速稳健的致密焦面阵列馈源设计方法[J]. 电子与信息学报, doi: 10.11999/JEIT190026 shu
Citation:  Shanhong HE, Mengqian JI, Liangyu XIE, Jin FAN, Chong FAN. A Fast and Stable Design Method for Dense Focal Plane Array Feed[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190026 shu

一种快速稳健的致密焦面阵列馈源设计方法

    作者简介: 何山红: 男,1973年生,教授,主要研究方向为大型反射面天线及馈源、阵列天线及宽带天线设计及研究;
    纪萌茜: 女,1996年生,硕士生,研究方向为天线中的优化设计;
    解良玉: 女,1996年生,硕士生,研究方向为宽带天线、多频天线和多波束天线设计;
    范瑾: 女,1985年生,工程师,博士,研究方向为大型射电天文望远镜天线及高性能馈源设计及研究;
    范冲: 男,1990年生,博士生,研究方向为周期性结构天线、透镜天线及反射面的设计及研究;
    通讯作者: 何山红, antennaeng@163.com
  • 基金项目: 国家自然科学基金(U1631115, 11403054),国家自然科学基金-中国科学院天文联合基金(U1631115),国家自然科学基金与瑞典科研教育国际合作基金(11611130023)

摘要: 致密焦面阵列馈源融合了多喇叭多波束馈源和相控阵列馈源的特点,与多喇叭多波束馈源和常规相控阵列馈源相比较,它可以同时提供更多的固定赋形波束进一步拓宽视场。在射电天文、雷达、电子侦察和卫星通信等领域引起了极大的关注。由于其阵列结构与常规阵列馈源不同,导致设计方法也具有特殊性,因此近年来展开了对其设计方法的研究。该文充分利用反射面天线的固有特性,并结合阵列天线理论,提出一种可以快速、稳健地设计致密焦面阵列馈源的方法,给出了设计原理和设计结果,并和最具代表性的多喇叭多波束馈源进行了性能对比分析,为设计致密焦面阵列馈电的大型反射面提供理论和数据参考。

English

    1. [1]

      CHEN Yang, MENG Hongfu, GAN Yu, et al. Millimeter wave multi-beam reflector antenna[C]. Proceedings of 2018 International Workshop on Antenna Technology, Nanjing, China, 2018: 1–3. doi: 10.1109/IWAT.2018.8379140.

    2. [2]

      MANOOCHEHRI O, EMADEDDIN A, DARVAZEHBAN A, et al. A new method for designing high efficiency multi feed multi beam reflector antennas[C]. Proceedings of 2017 International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 2017: 551–554. doi: 10.1109/ICEAA.2017.8065304.

    3. [3]

      ANGEVAIN J C, FONSECA N, SCHOBERT D, et al. Multibeam reflector antennas for space applications: Current trends and future perspectives in Europe[C]. Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.0804.

    4. [4]

      HE Shanhong, LI Wenkai, LU Xiaojia, et al. Predicting influence of the rest spherical surface on the instantaneous parabolic surface of multi-beam for radio astronomy[C]. Proceedings of 2018 IEEE MTT-S international wireless symposium, Chengdu, China, 2018: 1–3. doi: 10.1109/IEEE-IWS.2018.8400911.

    5. [5]

      SMITH S L, DUNNING A, SMART K W, et al. Performance validation of the 19-element multibeam feed for the five-hundred-metre aperture spherical radio telescope[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 2137–2138.

    6. [6]

      DUNNING A, BOWEN M, CASTILLO S, et al. Design and laboratory testing of the five hundred meter aperture spherical telescope (FAST) 19 beam L-band receiver[C]. Proceedings of the 201732nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017: 1–4. doi: 10.23919/URSIGASS.2017.8105012.

    7. [7]

      LIU Lei and GRAINGE K. Realization of phased arrays for reflector observing systems[C]. Proceedings of the 201732nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017: 1–4. doi: 10.23919/URSIGASS.2017.8105014.

    8. [8]

      HUT B, VAN DEN BRINK R H, and VAN CAPPELLEN W A. Status update on the system validation of APERTIF, the phased array feed system for the westerbork synthesis radio telescope[C]. Proceedings of the 201711th European Conference on Antennas and Propagation, Paris, France, 2017: 1960–1961. doi: 10.23919/EuCAP.2017.7928787.

    9. [9]

      WU Yang, WARNICK K F, and JIN Chengjin. Design study of an L-band phased array feed for wide-field surveys and vibration compensation on FAST[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3026–3033. doi: 10.1109/TAP.2013.2254438

    10. [10]

      IVASHINA M V, KEHN M N M, KILDAL P S, et al. Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays[C]. Proceedings of the 20061st European Conference on Antennas and Propagation, Nice, France, 2006: 1–6. doi: 10.1109/EUCAP.2006.4585045.

    11. [11]

      IVASHINA M and VAN ARDENNE J D B A. A way to improve the field of view of the radiotelescope with a dense focal plane array[C]. Proceedings of the 12th International Conference Microwave and Telecommunication Technology, Sevastopol, Ukraine, 2002: 278–281. doi: 10.1109/CRMICO.2002.1137238.(请核对作者信息)

    12. [12]

      IVASHINA M and BREGMAN J. Experimental synthesis of a feed pattern with a dense focal plane array[C]. Proceedings of the 200232nd European Microwave Conference, Milan, Italy, 2002: 1–4. doi: 10.1109/EUMA.2002.339456.

    13. [13]

      SHI Wei, ZHANG Quansheng, and DU Hui. Quantum particle swarm optimization for integer programming of phased array feeds[C]. Proceedings of 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2010: 1386–1389. doi: 10.1109/ICMMT.2010.5524774.

    14. [14]

      CHANG D C, HU C N, HUNG C I, et al. Pattern synthesis of the offset reflector antenna system with less complicated phased array feed[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 240–245. doi: 10.1109/8.277218

    15. [15]

      TANAKA S, YAMADA T, MURATA T, et al. A study on pattern synthesis method for array-fed reflector antenna for advanced direct broadcasting satellites[C]. Proceedings of 2001 IEEE Antennas and Propagation Society International Symposium, Boston, USA, 2001: 566–569. doi: 10.1109/APS.2001.958916.

    16. [16]

      SAKA B and YAZGAN E. Pattern optimization of a reflector antenna with planar-array feeds and cluster feeds[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 93–97. doi: 10.1109/8.554245

    17. [17]

      WHITE W D. Circular aperture distribution functions[J]. IEEE Transactions on Antennas and Propagation, 1977, 25(5): 714–716. doi: 10.1109/TAP.1977.1141672

    18. [18]

      SKULKIN S P, TURCHIN V I, KASCHEEV N I, et al. Transient field calculation of aperture antennas for various field distributions over the aperture[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2295–2298. doi: 10.1109/LAWP.2017.2715323

    19. [19]

      DUAN D W and RAHMAT-SAMII Y. A generalized three-parameter (3-P) aperture distribution for antenna applications[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6): 697–713. doi: 10.1109/8.144605

    20. [20]

      IUPIKOV O A, IVASHINA M V, SKOU N, et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 737–748. doi: 10.1109/TAP.2017.2763174

    21. [21]

      ELMER M, JEFFS B D, WARNICK K F, et al. Beamformer design methods for radio astronomical phased array feeds[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 903–914. doi: 10.1109/TAP.2011.2173143

    22. [22]

      CHIPPENDALE A P, MCCONNELL D, BANNISTER K, et al. Recent developments in measuring signal and noise in phased array feeds at CSIRO[C]. Proceedings of the 201610th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481741.

    1. [1]

      陆潞高梅国. 分布式阵列雷达基线位置和相位误差的卫星标校方法. 电子与信息学报, doi: 10.11999/JEIT181152

    2. [2]

      潘洁王帅李道京卢晓春. 基于方向图和多普勒相关系数的天基阵列SAR通道相位误差补偿方法. 电子与信息学报, doi: 10.11999/JEIT181061

    3. [3]

      李海李怡静吴仁彪. 载机偏航下基于广义相邻多波束自适应处理的低空风切变风速估计. 电子与信息学报, doi: 10.11999/JEIT180758

    4. [4]

      杨善超田康生吴长飞. 基于服务质量的相控阵雷达网目标分配方法. 电子与信息学报, doi: 10.11999/JEIT181133

    5. [5]

      唐敏齐栋刘成城赵拥军. 基于多级阻塞的稳健相干自适应波束形成. 电子与信息学报, doi: 10.11999/JEIT180332

    6. [6]

      徐保庆赵永波庞晓娇. 基于实值处理的联合波束域双基地MIMO雷达测角算法. 电子与信息学报, doi: 10.11999/JEIT180766

    7. [7]

      张顺外魏琪. 多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析. 电子与信息学报, doi: 10.11999/JEIT190069

    8. [8]

      陈树新洪磊吴昊刘卓崴岳龙华. 学生 t 混合势均衡多目标多伯努利滤波器. 电子与信息学报, doi: 10.11999/JEIT181121

    9. [9]

      唐伦马润琳杨恒陈前斌. 基于非正交多址接入的网络切片联合用户关联和功率分配算法. 电子与信息学报, doi: 10.11999/JEIT180770

    10. [10]

      达新宇王浩波罗章凯胡航倪磊潘钰. 基于双层多参数加权类分数阶傅里叶变换的双极化卫星安全传输方案. 电子与信息学报, doi: 10.11999/JEIT181135

    11. [11]

      徐公国单甘霖段修生乔成林王浩天. 基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法. 电子与信息学报, doi: 10.11999/JEIT181129

    12. [12]

      潘一苇彭华李天昀王文雅. 一种新的时分多址信号射频特征及其在特定辐射源识别中的应用. 电子与信息学报, doi: 10.11999/JEIT190163

  • 图 1  抛物面天线坐标系

    图 2  馈源结构

    图 3  中心频率的焦面电场分布

    图 4  中心频率的初级辐射方向图($\varphi $ = 90°平面)

    图 5  抛物面天线在中心频率的远场辐射方向图($\varphi $=90°)

    图 6  50号波束中心频率的立体远场辐射方向图

    表 1  多波束反射面天线性能总结表

    波束馈源类型天线增益(dB)天线效率(%)第1旁瓣电平(dB)半功率波束宽度(°)波束指向(°)与中心波束的增益差(dB)
    1号1.05 GHz焦面场75.0874.00–17.100.05960.0000.00
    多喇叭多波束馈源74.4664.15–24.100.06120.0000.00
    致密焦面阵列馈源74.9872.32–17.600.06060.0000.00
    5号1.05 GHz焦面场75.0172.82–16.400.0600–0.045–0.07
    多喇叭多波束馈源74.3862.97–19.900.0616–0.045–0.08
    致密焦面阵列馈源74.9471.66–16.100.0616–0.045–0.04
    14号1.05 GHz焦面场74.9271.32–16.500.0599–0.090–0.16
    多喇叭多波束馈源74.2060.47–17.600.0619–0.090–0.26
    致密焦面阵列馈源74.7468.43–20.200.0622–0.090–0.24
    29号1.05 GHz焦面场74.8169.54–16.400.0598–0.140–0.27
    多喇叭多波束馈源74.0057.70–15.400.0622–0.140–0.46
    致密焦面阵列馈源74.6166.41–17.100.0619–0.140–0.37
    50号1.05 GHz焦面场74.5865.95–15.600.0617–0.180–0.50
    多喇叭多波束馈源73.7854.91–13.500.0626–0.185–0.68
    致密焦面阵列馈源74.4263.57–15.300.0626–0.180–0.56
    1号1.25 GHz焦面场76.6775.46–16.900.05000.0000.00
    多喇叭多波束馈源76.1867.29–26.800.05270.0000.00
    致密焦面阵列馈源76.6274.42–19.100.05140.0000.00
    5号1.25 GHz焦面场76.5773.66–17.100.0500–0.045–0.10
    多喇叭多波束馈源76.0565.34–21.500.0530–0.045–0.12
    致密焦面阵列馈源76.5573.36–18.400.0519–0.045–0.06
    14号1.25 GHz焦面场76.4671.80–16.200.0502–0.090–0.21
    多喇叭多波束馈源75.8462.31–17.200.0542–0.090–0.33
    致密焦面阵列馈源76.2568.37–18.600.0529–0.090–0.36
    29号1.25 GHz焦面场76.3369.67–16.100.0505–0.140–0.34
    多喇叭多波束馈源75.6058.97–15.000.0538–0.140–0.57
    致密焦面阵列馈源76.2067.66–19.200.0526–0.135–0.41
    50号1.25 GHz焦面场76.1366.50–15.700.0512–0.180–0.54
    多喇叭多波束馈源75.2954.86–13.000.0548–0.185–0.88
    致密焦面阵列馈源75.9764.17–15.800.0535–0.185–0.64
    1号1.45 GHz焦面场78.0677.07–16.700.04260.0000.00
    多喇叭多波束馈源77.5268.06–30.600.04680.0000.00
    致密焦面阵列馈源78.0176.19–19.900.04400.0000.00
    5号1.45 GHz焦面场77.9775.49–16.600.0426–0.045–0.09
    多喇叭多波束馈源77.3966.05–21.600.0470–0.045–0.13
    致密焦面阵列馈源77.9074.28–18.800.0437–0.045–0.11
    14号1.45 GHz焦面场77.8573.43–16.200.0427–0.095–0.21
    多喇叭多波束馈源77.1662.64–17.200.0480–0.095–0.35
    致密焦面阵列馈源77.6469.96–20.100.0456–0.095–0.37
    29号1.45 GHz焦面场77.6770.45–16.500.0488–0.140–0.39
    多喇叭多波束馈源76.8658.46–15.000.0486–0.140–0.65
    致密焦面阵列馈源77.4967.59–17.500.0445–0.140–0.52
    50号1.45 GHz焦面场77.4366.66–16.000.0439–0.185–0.63
    多喇叭多波束馈源76.4453.07–12.800.0499–0.185–1.07
    致密焦面阵列馈源77.2263.52–13.700.0465–0.180–0.79
    下载: 导出CSV
  • 加载中
图(6)表(1)
计量
  • PDF下载量:  8
  • 文章访问数:  128
  • HTML全文浏览量:  96
  • 引证文献数: 0
文章相关
  • 通讯作者:  何山红, antennaeng@163.com
  • 收稿日期:  2019-01-11
  • 录用日期:  2019-04-18
  • 网络出版日期:  2019-05-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章