高级搜索

基于能量效率的双层非正交多址系统资源优化算法

高东 梁子林

引用本文: 高东, 梁子林. 基于能量效率的双层非正交多址系统资源优化算法[J]. 电子与信息学报, doi: 10.11999/JEIT190048 shu
Citation:  Dong GAO, Zilin LIANG. Energy EfficientBased Resource Optimization Algorithm for Two-tier Non-Orthogonal Multiple Access Network[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190048 shu

基于能量效率的双层非正交多址系统资源优化算法

    作者简介: 高东: 男,1982年生,副教授,研究方向为流程行业仿真建模、无线通信;
    梁子林: 男,1994年生,硕士生,研究方向为移动无线通信资源管理
    通讯作者: 高东,gaodong@mail.buct.edu.cn
摘要: 该文针对双层非正交多址系统(NOMA)中基于能量效率的资源优化问题,提出了基于双边匹配的子信道匹配方法和基于斯坦科尔伯格(Stackelberg)博弈的功率分配算法。首先将资源优化问题分解成子信道匹配与功率分配两个子问题,在功率分配问题中,将宏基站与小型基站层视作斯坦科尔伯格博弈中的领导者与追随者。然后将非凸优化问题转换成易于求解的方式,分别得到宏基站和小型基站层的功率分配。最后通过斯坦科尔伯格博弈,得到系统的全局功率分配方案。仿真结果表明,该资源优化算法能有效地提升双层NOMA系统的能量效率。

English

    1. [1]

      ZHANG Haijun, FANG Fang, CHENG Julian, et al. Energy-efficient resource allocation in NOMA heterogeneous networks[J]. IEEE Wireless Communications, 2018, 25(2): 48–53. doi: 10.1109/MWC.2018.1700074

    2. [2]

      XIAO Zhenyu, ZHU Lipeng, CHOI J, et al. Joint power allocation and beamforming for Non-Orthogonal Multiple Access (NOMA) in 5G millimeter wave communications[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 2961–2974. doi: 10.1109/TWC.2018.2804953

    3. [3]

      WU Zhanji, LU Kun, JIANG Chengxin, et al. Comprehensive study and comparison on 5G NOMA schemes[J]. IEEE Access, 2018, 6: 18511–18519. doi: 10.1109/ACCESS.2018.2817221

    4. [4]

      ZENG Ming, HAO Wanming, DOBRE O A, et al. Energy-efficient power allocation in uplink mmWave massive MIMO with NOMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3000–3004. doi: 10.1109/TVT.2019.2891062

    5. [5]

      ZHU Kun, HOSSAIN E, and ANPALAGAN A. Downlink power control in two-tier cellular OFDMA networks under uncertainties: A robust Stackelberg game[J]. IEEE Transactions on Communications, 2015, 63(2): 520–535. doi: 10.1109/tcomm.2014.2382095

    6. [6]

      CHEN Zhiyong, DING Zhiguo, DAI Xuchu, et al. An optimization perspective of the superiority of NOMA compared to conventional OMA[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5191–5202. doi: 10.1109/TSP.2017.2725223

    7. [7]

      吴广富, 邓天垠, 苏开荣, 等. 基于非正交多址接入系统的多用户分组优化算法[J]. 电子与信息学报, 2018, 40(9): 2080–2087. doi: 10.11999/JEIT171220
      WU Guangfu, DENG Tianyin, DU Kairong, et al. Multi-user grouping optimization algorithm based on non-orthogonal multiple access systems[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2080–2087. doi: 10.11999/JEIT171220

    8. [8]

      ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/comst.2016.2621116

    9. [9]

      XIANG Lanhua and CHEN Hongbin. Energy-efficient and fair power allocation approach for NOMA in ultra-dense heterogeneous networks[C]. International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery, Nanjing, China, 2017: 89–94. doi: 10.1109/CyberC.2017.54.

    10. [10]

      LI Xunan, LI Chong, and JIN Ye. Dynamic resource allocation for transmit power minimization in OFDM-based NOMA systems[J]. IEEE Communications Letters, 2016, 20(12): 2558–2561. doi: 10.1109/LCOMM.2016.2612688

    11. [11]

      HOJEIJ M R, FARAH J, NOUR C A, et al. Resource allocation in downlink Non-Orthogonal Multiple Access (NOMA) for future radio access[C]. IEEE 81st Vehicular Technology Conference, Glasgow, UK, 2015: 1–6. doi: 10.1109/VTCSpring.2015.7146056.

    12. [12]

      FANG Fang, ZHANG Haijun, CHENG Julian, et al. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2874–2885. doi: 10.1109/JSAC.2017.2777672

    13. [13]

      SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-Orthogonal Multiple Access (NOMA) for cellular future radio access[C]. The 7th IEEE Vehicular Technology Conference, Dresden, Germany, 2013: 1–5. doi: 10.1109/VTCSpring.2013.6692652.

    14. [14]

      PAPANDRIOPOULOS J and EVANS J S. SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3711–3724. doi: 10.1109/tit.2009.2023751

  • 图 1  SBS1中各子信道的效率

    图 2  MBS能量效率随迭代次数变化

    图 3  SBS的能量效率随迭代次数变化

    图 4  不同功率分配方法的比较

    表 1  不同路径衰减公式

    路径公式
    宏基站到宏用户${\rm{Pl}}\left( r \right) = 15.3 + 37.6\lg r$
    宏基站到小型基站用户${\rm{Pl}}\left( r \right) = 15.3 + 37.6\lg r + {L_w}$
    小型基站到其用户${\rm{Pl}}\left( r \right) = 38.46 + 20\lg r + 0.7r$
    小型基站到其他
    小型基站用户
    $\begin{aligned} {\rm{Pl} }\left( r \right) =\,& \max \left( \begin{array}{l} \left( {15.3 + 37.6\lg \left( {r - {R_s} } \right)} \right) \\ \left( {38.46 + 20\lg \left( {r - {R_s} } \right)} \right) \\ \end{array} \right) \\ &+ 0.7{R_s} + 2{L_w} \end{aligned} $
    小型基站到宏用户$\begin{aligned} {\rm{Pl} }\left( r \right) =\,& \max \left( \begin{array}{l} \left( {15.3 + 37.6\lg \left( {r - {R_s} } \right)} \right) \\ \left( {38.46 + 20\lg \left( {r - {R_s} } \right)} \right) \\ \end{array} \right) \\ &+ 0.7{R_s} + {L_w} \end{aligned} $
    下载: 导出CSV

    表 2  仿真参数

    参数
    宏基站半径${R_m}$500 m
    小型基站半径${R_s}$10 m
    墙渗透衰减${L_w}$10 dB
    系统带宽$B$30 MH
    载波频率2 GHz
    对数正态阴影衰落方差8 dB
    下载: 导出CSV
  • 加载中
图(4)表(2)
计量
  • PDF下载量:  8
  • 文章访问数:  630
  • HTML全文浏览量:  372
文章相关
  • 通讯作者:  高东, gaodong@mail.buct.edu.cn
  • 收稿日期:  2019-01-17
  • 录用日期:  2020-11-05
  • 网络出版日期:  2020-01-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章