高级搜索

基于瑞利多径衰落信道的信号包络频谱感知

周义明 李英顺 田小平

引用本文: 周义明, 李英顺, 田小平. 基于瑞利多径衰落信道的信号包络频谱感知[J]. 电子与信息学报, doi: 10.11999/JEIT190065 shu
Citation:  Yiming ZHOU, Yingshun LI, Xiaoping TIAN. Spectrum Sensing Based on Signal Envelope of Rayleigh Multi-path Fading Channels[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190065 shu

基于瑞利多径衰落信道的信号包络频谱感知

    作者简介: 周义明: 男,1976年生,讲师,研究方向为无线通信、信号处理、FPGA;
    李英顺: 女,1971年生,教授,研究方向为信号检测与处理、故障识别;
    田小平: 男,1973年生,副教授,研究方向为无线通信、信号处理、室内定位
    通讯作者: 周义明,zhouyiming@bipt.edu.cn
摘要: 为提高信号采样值之间的相关性和降低噪声对感知性能的影响,该文提出基于信号包络自相关矩阵的频谱感知算法。首先对采样信号等间隔时长截取,以相邻间隔的采样值计算信号自相关性,并构造出近似自相关矩阵。其次依据矩阵次对角线元素性质构造了统计量。分别计算了该统计量的检测概率分布函数与虚警概率分布函数,分析了频谱感知算法的检测性能,算法优化了信号相关性的计算,降低了噪声对感知性能的影响。最后通过仿真验证了不同参数对检测概率和虚警概率的影响,并提出了进一步提高检测性能的措施。

English

    1. [1]

      AKYILDIZ I F, LEE W Y, VURAN M C, et al. A survey on spectrum management in cognitive radio networks[J]. IEEE Communications Magazine, 2008, 46(4): 40–48. doi: 10.1109/MCOM.2008.4481339

    2. [2]

      GHASEMI A and SOUSA E S. Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs[J]. IEEE Communications Magazine, 2008, 46(4): 32–39. doi: 10.1109/MCOM.2008.4481338

    3. [3]

      HAMID M, BEN SLIMANE S, VAN MOER W, et al. Spectrum sensing challenges: Blind sensing and sensing optimization[J]. IEEE Instrumentation & Measurement Magazine, 2016, 19(2): 44–52. doi: 10.1109/MIM.2016.7462794

    4. [4]

      ALI A and HAMOUDA W. Advances on spectrum sensing for cognitive radio networks: Theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1277–1304. doi: 10.1109/COMST.2016.2631080

    5. [5]

      TANDRA R and SAHAI A. SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 4–17. doi: 10.1109/jstsp.2007.914879

    6. [6]

      CHATZIANTONIOU E, ALLEN B, VELISAVLJEVIC V, et al. Energy detection based spectrum sensing over two-wave with diffuse power fading channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 868–874. doi: 10.1109/TVT.2016.2556084

    7. [7]

      SINGH A, BHATNAGAR M R, and MALLIK R K. Performance of an improved energy detector in multihop cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 732–743. doi: 10.1109/TVT.2015.2401332

    8. [8]

      CHIN W L, LI Jiaming, and CHEN H H. Low-complexity energy detection for spectrum sensing with random arrivals of primary users[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 947–952. doi: 10.1109/TVT.2015.2405558

    9. [9]

      QUAN Zhi, ZHANG Wenyi, SHELLHAMMER S J, et al. Optimal spectral feature detection for spectrum sensing at very low SNR[J]. IEEE Transactions on Communications, 2011, 59(1): 201–212. doi: 10.1109/tcomm.2010.112310.090306

    10. [10]

      MEHRABIAN A and ZAIMBASHI A. Robust and blind eigenvalue-based multiantenna spectrum sensing under IQ imbalance[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5581–5591. doi: 10.1109/TWC.2018.2847357

    11. [11]

      BOUALLEGUE K, DAYOUB I, GHARBI M, et al. Blind spectrum sensing using extreme eigenvalues for cognitive radio networks[J]. IEEE Communications Letters, 2018, 22(7): 1386–1389. doi: 10.1109/LCOMM.2017.2776147

    12. [12]

      JIN Ming, GUO Qinghua, and LI Youming. On covariance matrix based spectrum sensing over frequency-selective channels[J]. IEEE Access, 2018, 6: 29532–29540. doi: 10.1109/ACCESS.2018.2842099

    13. [13]

      MERRITT J C and CHISUM J D. High-speed cross-correlation for spectrum sensing and direction finding of time-varying signals[J]. IEEE Sensors Journal, 2018, 18(15): 6161–6168. doi: 10.1109/JSEN.2018.2847598

    14. [14]

      HAN Weijia, HUANG Chuan, LI Jiandong, et al. Correlation-based spectrum sensing with oversampling in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(5): 788–802. doi: 10.1109/jsac.2014.2361076

    15. [15]

      JIN Ming, GUO Qinghua, XI Jiangtao, et al. Spectrum sensing using weighted covariance matrix in Rayleigh fading channels[J]. IEEE Transactions on Vehicular Technology, 2015, 64(11): 5137–5148. doi: 10.1109/TVT.2014.2379924

    16. [16]

      SHARMA R K and WALLACE J W. Correlation-based sensing for cognitive radio networks: Bounds and experimental assessment[J]. IEEE Sensors Journal, 2011, 11(3): 657–666. doi: 10.1109/JSEN.2010.2058097

    1. [1]

      蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法. 电子与信息学报,

  • 图 1  不同包络噪声功率比条件下检测概率与虚警概率的关系

    图 2  不同信号相关系数对检测概率的影响

    图 3  包络噪声功率比与检测概率在不同相关系数下的对应关系

    图 4  包络检测、能量检测和统计协方差检测的检测性能比较

    图 5  实际感知与理论感知在不同信噪比条件下的效果比较

  • 加载中
图(5)
计量
  • PDF下载量:  11
  • 文章访问数:  791
  • HTML全文浏览量:  433
文章相关
  • 通讯作者:  周义明, zhouyiming@bipt.edu.cn
  • 收稿日期:  2019-01-24
  • 录用日期:  2019-09-05
  • 网络出版日期:  2020-01-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章