算法1 多平台卸载智能资源分配算法 |
阶段1:初始化 |
(1) 任务${R_i}$的最大延迟${\tau _{{R_i}}}$,任务大小${B_{{R_i}}}$; |
(2) 任务的当前位置$P = 1$; |
(3) ${{Q}}$矩阵,参数$\gamma $,奖赏矩阵${{R}}$; |
(4) 本地(l)、移动边缘计算(m)、云计算(c),各平台平 均延迟${\tau _1},{\tau _2},{\tau _3}$,允许最大任务大小${B_1},{B_2},{B_3}$。 |
阶段2:选择任务卸载位置 |
计算(${\tau _{{R_i}}},{B_{{R_i}}}$)和(${\tau _1},{B_1}$)的欧式距离$D$ |
$D = \sqrt {{{({\tau _{{R_i}}} - {\tau _1})}^2} + {{({B_{{R_i}}} - {B_1})}^2}} ,P = 1$ |
for j=2, 3 do |
计算(${\tau _{{R_i}}},{B_{{R_i}}}$)和(${\tau _j},{B_j}$)的欧式距离${d_j}$ |
if ${d_j} < D$ then |
$D = {d_j},P = j$ |
end if |
end for |
if P=1 |
任务卸载到本地 |
if P=2 or 3 |
进行阶段3。 |
阶段3:资源分配 |
if P=3 then |
在云计算服务器中计算任务${R_i}$ |
end if |
if P=2 then |
for 每次迭代 do |
随机选择一个状态${s_t}$ |
for 每一步 do |
从状态${s_t}$的可能动作中随机选择动作$a$ |
执行动作$a$,计算奖励$r$,进入下一状态$s'$ |
计算 |
$q(s,a) \leftarrow r(s,a) + \gamma \cdot \max [q(s',a')]$ |
更新状态$s \leftarrow s'$ |
until ${{Q}}$矩阵稳定 |
end for |
end for |
end if |

Citation: Ruyan WANG, Yingjie LIANG, Yaping CUI. Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190074

车辆网络多平台卸载智能资源分配算法
English
Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks
-
-
[1]
WU Dapeng, ZHANG Feng, WANG Honggang, et al. Security-oriented opportunistic data forwarding in mobile social networks[J]. Future Generation Computer Systems, 2018, 87: 803–815. doi: 10.1016/j.future.2017.07.028
-
[2]
LUO Changqing, JI Jinlong, WANG Qianlong, et al. Channel state information prediction for 5G wireless communications: A deep learning approach[J]. IEEE Transactions on Network Science and Engineering, 2018. doi: 10.1109/TNSE.2018.2848960
-
[3]
HUSSAIN R, SON J, EUN H, et al. Rethinking vehicular communications: Merging VANET with cloud computing[C]. The 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, Taipei, China, 2013: 606–609. doi: 10.1109/CloudCom.2012.6427481.
-
[4]
LI Chunhai, WANG Siming, HUANG Xumin, et al. Parked vehicular computing for energy-efficient Internet of vehicles: A contract theoretic approach[J]. IEEE Internet of Things Journal, 2019, 6(4): 6079–6088. doi: 10.1109/JIOT.2018.2869892
-
[5]
ZHANG Ke, MAO Yuming, LENG Supeng, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997360.
-
[6]
ASHRAF M I, LIU Chenfeng, BENNIS M, et al. Dynamic resource allocation for optimized latency and reliability in vehicular networks[J]. IEEE Access, 2018, 6: 63843–63858. doi: 10.1109/ACCESS.2018.2876548
-
[7]
ZHANG Ke, MAO Yuming, LENG Supeng, et al. Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks[J]. Mobile Networks and Applications, 2019, 24(3): 1003–1014. doi: 10.1007/s11036-018-1032-0
-
[8]
DING Qing, SUN Bo, and ZHNAG Xinming. A traffic-light-aware routing protocol based on street connectivity for urban vehicular Ad Hoc networks[J]. IEEE Communications Letters, 2016, 20(8): 1635–1638. doi: 10.1109/LCOMM.2016.2574708
-
[9]
ZHANG Ke, MAO Yuming, LENG Supeng, et al. Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading[J]. IEEE Vehicular Technology Magazine, 2017, 12(2): 36–44. doi: 10.1109/MVT.2017.2668838
-
[10]
HAN Guangjie, LIU Li, CHAN S, et al. HySense: A hybrid mobile Crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint[J]. IEEE Communications Magazine, 2017, 55(3): 93–99. doi: 10.1109/MCOM.2017.1600658CM
-
[11]
SOOKHAK M, YU F R, HE Ying, et al. Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 55–64. doi: 10.1109/MVT.2017.2667499
-
[12]
LI Ji, GAO Hui, LÜ Tiejun, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377343.
-
[13]
HE Ying, ZHAO Nan, and YIN Hongxi. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44–55. doi: 10.1109/TVT.2017.2760281
-
[14]
LIN Chuncheng, DENG D J, and YAO C C. Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units[J]. IEEE Internet of Things Journal, 2018, 5(5): 3692–3700. doi: 10.1109/JIOT.2017.2690961
-
[15]
MAO Yuyi, YOU Changsheng, ZHNAG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
-
[16]
ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017, 5: 11255–11268. doi: 10.1109/ACCESS.2017.2710056
-
[17]
ZHANG Ke, MAO Yuming, LENG Supeng, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896–5907. doi: 10.1109/ACCESS.2016.2597169
-
[1]
-
-