高级搜索

基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪

张颖 高灵君

引用本文: 张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079 shu
Citation:  Ying ZHANG, Lingjun GAO. Target Tracking with Underwater Sensor Networks Based on Grubbs Criterion and Improved Particle Filter Algorithm[J]. Journal of Electronics and Information Technology, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079 shu

基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪

    作者简介: 张颖: 男,1968年生,博士,教授,博士生导师,研究方向为物联网、海事无线通信、无线自组织网络;
    高灵君: 女,1994年生,硕士生,研究方向为物联网信息融合,无线传感网络目标跟踪、预测
    通讯作者: 张颖,yingzhang@shmtu.edu.cn
  • 基金项目: 国家自然科学基金(61673259)

摘要: 水下无线传感网络(UWSN)执行目标跟踪时,因为各个传感器节点测量值对目标状态估计的贡献不一样以及节点能量有限,所以探索一种好的节点融合权重方法和节点规划机制能够获得更好的跟踪性能。针对上述问题,该文提出一种基于Grubbs准则和互信息熵加权融合的分布式粒子滤波(PF)目标跟踪算法(GMIEW)。首先利用Grubbs准则对传感器节点所获得的信息进行分析检验,去除干扰信息和错误信息。其次,在粒子滤波的重要性权值计算的过程中,引入动态加权因子,采用传感器节点的测量值与目标状态之间的互信息熵,来反映传感器节点提供的目标信息量,从而获得各个节点相应的加权因子。最后,采用3维场景下的簇-树型网络拓扑结构,跟踪监测区域内的目标。实验结果显示,该算法可有效提高水下传感器网络测量数据对目标跟踪预测的准确度,降低跟踪误差。

English

    1. [1]

      HEIDEMANN J, STOJANOVIC M, and ZORZI M. Underwater sensor networks: Applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158–175. doi: 10.1098/rsta.2011.0214

    2. [2]

      SOUZA É L, NAKAMURA E F, and PAZZI R W. Target tracking for sensor networks: A survey[J]. ACM Computing Surveys (CSUR) , 2016, 49(2): 31. doi: 10.1145/2938639

    3. [3]

      HAN Guangjie, JIANG Jinfang, ZHANG Chenyu, et al. A survey on mobile anchor node assisted localization in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2220–2243. doi: 10.1109/COMST.2016.2544751

    4. [4]

      周伟, 石为人, 张洪德, 等. 无线传感器网络的分布式目标跟踪研究[J]. 仪器仪表学报, 2013, 34(7): 1485–1491. doi: 10.19650/j.cnki.cjsi.2013.07.007
      ZHOU Wei, SHI Weiren, ZHANG Hongde, et al. Study on distributed target tracking in wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2013, 34(7): 1485–1491. doi: 10.19650/j.cnki.cjsi.2013.07.007

    5. [5]

      AKYILDIZ I F, POMPILI D, and MELODIA T. Underwater acoustic sensor networks: Research challenges[J]. Ad Hoc Networks, 2005, 3(3): 257–279. doi: 10.1016/j.adhoc.2005.01.004

    6. [6]

      WANG Xin, XU Mengxi, WANG Huibin, et al. Combination of interacting multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks[J]. Mathematical Problems in Engineering, 2012, 2012: 829451. doi: 10.1155/2012/829451

    7. [7]

      DEHNAVI S M, AYATI M, and ZAKERZADEH M R. Three dimensional target tracking via underwater acoustic wireless sensor network[C]. 2017 Artificial Intelligence and Robotics, Qazvin, Iran, 2017: 153–157. doi: 10.1109/RIOS.2017.7956459.

    8. [8]

      ZHANG Qiang, ZHANG Chaojie, LIU Meiqin, et al. Local node selection for target tracking based on underwater wireless sensor networks[J]. International Journal of Systems Science, 2015, 46(16): 2918–2927. doi: 10.1080/00207721.2014.880199

    9. [9]

      POOSTPASAND M and JAVIDAN R. An adaptive target tracking method for 3D underwater wireless sensor networks[J]. Wireless Networks, 2018, 24(8): 2797–2810. doi: 10.1007/s11276-017-1506-1

    10. [10]

      ISBITIREN G and AKAN O B. Three-dimensional underwater target tracking with acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 3897–3906. doi: 10.1109/TVT.2011.2163538

    11. [11]

      TISDALE J, RYAN A, KIM Z, et al. A multiple UAV system for vision-based search and localization[C]. 2008 American Control Conference, Seattle, USA, 2008: 1985–1990. doi: 10.1109/ACC.2008.4586784.

    12. [12]

      RYAN A and HEDRICK J K. Particle filter based information-theoretic active sensing[J]. Robotics and Autonomous Systems, 2010, 58(5): 574–584. doi: 10.1016/j.robot.2010.01.001

    13. [13]

      HOFFMANN G M and TOMLIN C J. Mobile sensor network control using mutual information methods and particle filters[J]. IEEE Transactions on Automatic Control, 2010, 55(1): 32–47. doi: 10.1109/TAC.2009.2034206

    14. [14]

      AHMADI H, VIANI F, and BOUALLEGUE R. An accurate prediction method for moving target localization and tracking in wireless sensor networks[J]. Ad Hoc Networks, 2018, 70: 14–22. doi: 10.1016/j.adhoc.2017.11.008

    15. [15]

      ORACEVIC A, AKBAS S, and OZDEMIR S. Secure and reliable object tracking in wireless sensor networks[J]. Computers & Security, 2017, 70: 307–318. doi: 10.1016/j.cose.2017.06.009

    16. [16]

      LIU Meiqin, ZHANG Duo, ZHANG Senlin, et al. Node depth adjustment based target tracking in UWSNs using improved harmony search[J]. Sensors, 2017, 17(12): 2807. doi: 10.3390/s17122807

    17. [17]

      HUANG Yan, LIANG Wei, YU Haibin, et al. Target tracking based on a distributed particle filter in underwater sensor networks[J]. Wireless Communications & Mobile Computing, 2008, 8(8): 1023–1033. doi: 10.1002/wcm.660

    18. [18]

      胡玲, 侍洪波. 基于分簇的动态协同算法在无线传感器网络中的应用[J]. 华东理工大学学报: 自然科学版, 2012, 38(3): 356–359, 390.
      HU Ling and SHI Hongbo. Dynamic collaborative algorithms based on clustering routing protocol applied in wireless sensor network[J]. Journal of East China University of Science and Technology:Natural Science Edition, 2012, 38(3): 356–359, 390.

    19. [19]

      PILLUTLA L S. Network coding based distributed indoor target tracking using wireless sensor networks[J]. Wireless Personal Communications, 2017, 96(3): 3673–3691. doi: 10.1007/s11277-017-4069-7

    20. [20]

      黄艳, 梁韦, 于海斌. 基于粒子滤波的无线传感器网络目标跟踪算法[J]. 控制与决策, 2008, 23(12): 1389–1394. doi: 10.3321/j.issn:1001-0920.2008.12.014
      HUANG Yan, LIANG Wei, YU Haibin, et al. Tracking algorithms based on particle filter for wireless sensor networks[J]. Control and Decision, 2008, 23(12): 1389–1394. doi: 10.3321/j.issn:1001-0920.2008.12.014

    21. [21]

      SOZER E M, STOJANOVIC M, and PROAKIS J G. Underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 72–83. doi: 10.1109/48.820738

    22. [22]

      ZHANG Bingbing, WANG Yiyin, WANG Hongyi, et al. Tracking a duty-cycled autonomous underwater vehicle by underwater wireless sensor networks[J]. IEEE Access, 2017, 5: 18016–18032. doi: 10.1109/ACCESS.2017.2750322

    23. [23]

      郭忠文, 罗汉江, 洪锋, 等. 水下无线传感器网络的研究进展[J]. 计算机研究与发展, 2010, 47(3): 377–389.
      GUO Zhongwen, LUO Hanjiang, HONG Feng, et al. Current progress and research issues in underwater sensor networks[J]. Journal of Computer Research and Development, 2010, 47(3): 377–389.

    24. [24]

      柴毅, 屈剑锋, 郭茂耘, 等. 分布式传感器网络在线自适应数据融合算法研究[J]. 仪器仪表学报, 2007, 28(8): 129–134.
      CHAI Yi, QU Jianfeng, GUO Maoyun, et al. Distributed online adaptive data fusion algorithm for wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2007, 28(8): 129–134.

    1. [1]

      侯志强, 陈立琳, 余旺盛, 马素刚, 范九伦. 基于双模板Siamese网络的鲁棒视觉跟踪算法. 电子与信息学报, 2019, 41(9): 2247-2255.

    2. [2]

      王洪雁, 邱贺磊, 郑佳, 裴炳南. 光照变化下基于逆向稀疏表示的视觉跟踪方法. 电子与信息学报, 2019, 41(3): 632-639.

    3. [3]

      王宗原, 周卫东. 学生t量测分布下鲁棒粒子滤波算法的设计与实现. 电子与信息学报, 2019, 41(0): 1-8.

    4. [4]

      孙彦景, 石韫开, 云霄, 朱绪冉, 王赛楠. 基于多层卷积特征的自适应决策融合目标跟踪算法. 电子与信息学报, 2019, 41(10): 2464-2470.

    5. [5]

      王旭东, 王屹炜, 闫贺. 背景抑制直方图模型的连续自适应均值漂移跟踪算法. 电子与信息学报, 2019, 41(6): 1480-1487.

    6. [6]

      吕增威, 魏振春, 韩江洪, 孙仁浩, 夏成凯. 基于多目标优化的无线传感器网络移动充电及数据收集算法. 电子与信息学报, 2019, 41(8): 1877-1884.

    7. [7]

      秦宁宁, 金磊, 许健, 徐帆, 杨乐. 邻近信息约束下的随机异构无线传感器网络节点调度算法. 电子与信息学报, 2019, 41(10): 2310-2317.

    8. [8]

      何灏, 易卫东, 陈永锐, 王喆. 基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化. 电子与信息学报, 2019, 41(3): 687-693.

    9. [9]

      黄静琪, 胡琛, 孙山鹏, 高翔, 何兵. 一种基于异步传感器网络的空间目标分布式跟踪方法. 电子与信息学报, 2019, 41(0): 1-8.

    10. [10]

      徐公国, 单甘霖, 段修生, 乔成林, 王浩天. 基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法. 电子与信息学报, 2019, 41(9): 2201-2208.

    11. [11]

      陈树新, 洪磊, 吴昊, 刘卓崴, 岳龙华. 学生 t 混合势均衡多目标多伯努利滤波器. 电子与信息学报, 2019, 41(10): 2457-2463.

    12. [12]

      蒋俊正, 李杨剑, 赵海兵, 欧阳缮. 一种大规模传感器网络节点分布式定位算法. 电子与信息学报, 2019, 41(0): 1-7.

    13. [13]

      侯志强, 王帅, 廖秀峰, 余旺盛, 王姣尧, 陈传华. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪. 电子与信息学报, 2019, 41(8): 1983-1991.

    14. [14]

      唐红亮, 吴柏林, 胡旺, 康承旭. 基于粒子群优化的地震应急物资多目标调度算法. 电子与信息学报, 2019, 41(0): 1-9.

    15. [15]

      王巍, 周凯利, 王伊昌, 王广, 袁军. 基于快速滤波算法的卷积神经网络加速器设计. 电子与信息学报, 2019, 41(11): 2578-2584.

    16. [16]

      王逸林, 马世龙, 邹男, 梁国龙. 时空域联合的水下未知线谱目标检测方法. 电子与信息学报, 2019, 41(7): 1682-1689.

    17. [17]

      黄颖坤, 金炜东, 葛鹏, 李冰. 基于多尺度信息熵的雷达辐射源信号识别. 电子与信息学报, 2019, 41(5): 1084-1091.

    18. [18]

      王辰硕, 何光强, 李玥琪, 赵荣建, 陈贤祥, 杜利东, 赵湛, 方震. 基于涡轮式气体流量传感器的用力呼气容量计算方法. 电子与信息学报, 2019, 41(10): 2396-2401.

    19. [19]

      张鹤玖, 余宁梅, 吕楠, 刘尕. 一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器. 电子与信息学报, 2019, 41(6): 1466-1471.

    20. [20]

      王汝言, 李宏娟, 吴大鹏. 基于Stackelberg博弈的虚拟化无线传感网络资源分配策略. 电子与信息学报, 2019, 41(2): 377-384.

  • 图 1  水下传感器网络模型

    图 2  3维网络仿真场景

    图 3  观测噪声为0.36, 3种算法的不同跟踪轨迹

    图 5  观测噪声为2.00, 3种算法的不同跟踪轨迹

    图 7  观测噪声为5.00, 3种算法的不同跟踪轨迹

    图 4  观测噪声为0.36, 3种不同算法的平均位置RMSE

    图 6  观测噪声为2.00, 3种不同算法的平均位置RMSE

    图 8  观测噪声为5.00, 3种不同算法的平均位置RMSE

    图 9  小区域数量为4, 3种不同算法的平均位置RMSE

    图 11  小区域数量为16, 3种不同算法的平均位置RMSE

    图 12  不同小区域数量下3种不同算法的能量损耗

    图 10  小区域数量为8, 3种不同算法的平均位置RMSE

    表 1  目标跟踪算法仿真中的参数设置

    仿真参数 数值
    目标初始位置(m)(0, 60, 80)
    目标初始加速度(m/s2)(5, 6, –1)
    粒子数(个)2000
    声音传感器密度ρ(个/m3)0.00008
    仿真次数(次)50
    目标初始速度(m/s)(15, –20, 4)
    采样间隔(s)1
    监测时长(s)20
    过程噪声方差0.1
    目标信号能量S5000
    下载: 导出CSV

    表 2  3种算法的平均跟踪反应时间

    跟踪算法平均跟踪反应时间(s)
    AW0.1451
    AHPW0.3857
    GMIEW0.5046
    下载: 导出CSV

    表 3  3D仿真场景中不同传感器密度ρ下3种算法的平均位置RMSE(个/m3)

    算法0.000060.000080.00010
    AW3.64521.04420.9236
    AHPW2.62350.89400.5024
    GMIEW1.52610.50230.3026
    下载: 导出CSV
  • 加载中
图(12)表(3)
计量
  • PDF下载量:  32
  • 文章访问数:  282
  • HTML全文浏览量:  168
文章相关
  • 通讯作者:  张颖, yingzhang@shmtu.edu.cn
  • 收稿日期:  2019-01-28
  • 录用日期:  2019-08-29
  • 网络出版日期:  2019-09-03
  • 刊出日期:  2019-10-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章