高级搜索

基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法

张颖 姚雨丰

引用本文: 张颖, 姚雨丰. 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法[J]. 电子与信息学报, doi: 10.11999/JEIT190102 shu
Citation:  Ying ZHANG, Yufeng YAO. Channel Estimation Algorithm of Maritime Sparse Channel Based on Fast Bayesian Matching Pursuit Optimization[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190102 shu

基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法

    作者简介: 张颖: 男,1968年生,博士,教授,博士生导师,研究方向为物联网、海事无线通信、无线自组织网络;
    姚雨丰: 男,1995年生,硕士生,研究方向为海事无线通信信道估计、无线信号传输技术
    通讯作者: 张颖,yingzhang@shmtu.eud.cn
  • 基金项目: 国家自然科学基金(61673259)

摘要: 正交频分复用(OFDM)系统中,由于频率发生选择性衰落信道在数据传输中会产生符号间干扰,因此接收机往往需要知道信道状态信息。而在海上通信的情况下,信道传输会受到多种外界因素的干扰,往往需要预先进行信道探测估计。为了提高估计性能,该文提出一种基于奇异值分解优化观测矩阵的快速贝叶斯匹配追踪稀疏信道估计算法(FBMPO),该算法不仅能够充分考虑海上通信的信道稀疏性,也能够降低信道的不确定性带来的影响。计算机仿真实验表明,与传统的信道估计算法相比,该算法能够提高信道估计的精确度。

English

    1. [1]

      XIAO Liping, LIANG Zhibo, and LIU Kai. A novel compressed sensing-based channel estimation method for OFDM system[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A(1): 322–326. doi: 10.1587/transfun.E100.A.322

    2. [2]

      DAI Linglong, WANG Zhaocheng, and YANG Zhixing. Compressive sensing based time domain synchronous OFDM transmission for vehicular communications[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 460–469. doi: 10.1109/JSAC.2013.SUP.0513041

    3. [3]

      DAI Linglong, WANG Zhaocheng, and YANG Zhixing. Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends[J]. IEEE Communications Magazine, 2012, 50(6): 150–158. doi: 10.1109/MCOM.2012.6211500

    4. [4]

      LI Weichang and PREISIG J C. Estimation of rapidly time-varying sparse channels[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927–939. doi: 10.1109/JOE.2007.906409

    5. [5]

      GE Lijun, CHENG Yitai, XU Wei, et al. Sparsity adaptive channel estimation based on compressed sensing for OFDM systems[J]. Journal of the Chinese Institute of Engineers, 2017, 40(2): 146–148. doi: 10.1080/02533839.2017.1287597

    6. [6]

      TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255–271. doi: 10.1109/JSTSP.2010.2042410

    7. [7]

      GUI Guan, WAN Qun, PENG Wei, et al. Sparse multipath channel estimation using compressive sampling matching pursuit algorithm[C]. Proceedings of the 7th IEEE VTS Asia Pacific Wireless Communications Symposium, Kaohsiung, China, 2010: 10–14. (请核对出版地信息)

    8. [8]

      GUI Guan, WAN Qun, and PENG Wei. Fast compressed sensing-based sparse multipath channel estimation with smooth L0 algorithm[C]. Proceedings of the Third International Conference on Communications and Mobile Computing, Qingdao, China, 2011: 242–245.

    9. [9]

      KARABULUT G Z and YONGACOGLU A. Sparse channel estimation using orthogonal matching pursuit algorithm[C]. Proceedings of IEEE 60th Vehicular Technology Conference, Los Angeles, USA, 2004: 3880–3884.

    10. [10]

      ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2590–2603. doi: 10.1109/TWC.2015.2505315

    11. [11]

      CHEN Guorui. Channel estimation with Bayesian framework based on compressed sensing algorithm in multimedia transmission system[J]. Multimedia Tools and Applications, 2019, 78(7): 8813–8825. doi: 10.1007/s11042-018-6443-1

    12. [12]

      JOSE R, PAVITHRAN G, and ASWATHI C. Sparse channel estimation in OFDM systems using compressed sensing techniques in a Bayesian framework[J]. Computers & Electrical Engineering, 2017, 61: 173–183. doi: 10.1016/j.compeleceng.2017.03.014

    13. [13]

      BARBU O E, MANCHÓN C N, ROM C, et al. OFDM receiver for fast time-varying channels using block-sparse Bayesian learning[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10053–10057. doi: 10.1109/TVT.2016.2554611

    14. [14]

      PRASAD R, MURTHY C R, RAO B D. Joint channel estimation and data detection in MIMO-OFDM systems: A sparse Bayesian learning approach[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5369–5382. doi: 10.1109/TSP.2015.2451071

    15. [15]

      SCHNITER P, POTTER L C, and ZINIEL J. Fast Bayesian matching pursuit[C]. Proceedings of 2008 Information Theory and Applications Workshop, San Diego, USA, 2008: 326–333.

    16. [16]

      WEI Zhuangkun, HU Wenxiu, HAN Dahai, et al. Simultaneous channel estimation and signal detection in wireless ultraviolet communications combating inter-symbol-interference[J]. Optics Express, 2018, 26(3): 3260–3270. doi: 10.1364/OE.26.003260

    17. [17]

      HE Chengbing, HUANG Jianguo, ZHANG Qunfei, et al. Single carrier frequency domain equalizer for underwater wireless communication[C]. Proceedings of 2009 WRI International Conference on Communications and Mobile Computing, Kunming, China, 2009: 186–190.

    18. [18]

      QI Chenhao, YUE Guosen, WU Lenan, et al. Pilot design schemes for sparse channel estimation in OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1493–1505. doi: 10.1109/TVT.2014.2331085

    19. [19]

      胡强, 林云. 基于观测矩阵优化的自适应压缩感知算法[J]. 计算机应用, 2017, 37(12): 3381–3385. doi: 10.11772/j.issn.1001-9081.2017.12.3381
      HU Qiang and LIN Yun. Adaptive compressed sensing algorithm based on observation matrix optimization[J]. Journal of Computer Applications, 2017, 37(12): 3381–3385. doi: 10.11772/j.issn.1001-9081.2017.12.3381

    20. [20]

      CANDÈS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9-10): 589–592. doi: 10.1016/j.crma.2008.03.014

    1. [1]

      郭英, 东润泽, 张坤峰, 眭萍, 杨银松. 基于稀疏贝叶斯学习的多跳频信号DOA估计方法. 电子与信息学报,

    2. [2]

      崔维嘉, 张鹏, 巴斌. 基于循环匹配追踪的稀疏重构时延估计算法. 电子与信息学报,

    3. [3]

      李瑞, 张群, 苏令华, 梁佳, 罗迎. 基于稀疏贝叶斯学习的双基雷达关联成像. 电子与信息学报,

    4. [4]

      路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法. 电子与信息学报,

    5. [5]

      杨若男, 张伟涛, 楼顺天. 基于平行因子分析的SIMO-OFDM系统盲信道与符号联合估计算法. 电子与信息学报,

    6. [6]

      陈曦, 张坤. 一种基于树增强朴素贝叶斯的分类器学习方法. 电子与信息学报,

    7. [7]

      陈莹, 何丹丹. 基于贝叶斯融合的时空流异常行为检测模型. 电子与信息学报,

    8. [8]

      伊鹏, 谢记超, 张震, 谷允捷, 赵丹. 抗侧信道攻击的服务功能链部署方法. 电子与信息学报,

    9. [9]

      申滨, 吴和彪, 崔太平, 陈前斌. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测. 电子与信息学报,

    10. [10]

      钱志鸿, 田春生, 王鑫, 王雪. D2D网络中信道选择与功率控制策略研究. 电子与信息学报,

    11. [11]

      杨凌, 赵膑, 陈亮, 李媛, 张国龙. 基于回声状态网络的卫星信道在线盲均衡算法. 电子与信息学报,

    12. [12]

      刘毅, 马莹, 刘轩. 快衰落瑞利信道下分布式线性卷积空时码的分集增益. 电子与信息学报,

    13. [13]

      黄海, 冯新新, 刘红雨, 厚娇, 赵玉迎, 尹莉莉, 姜久兴. 基于随机加法链的高级加密标准抗侧信道攻击对策. 电子与信息学报,

    14. [14]

      黄开枝, 潘启润, 袁泉, 游伟. 一种侧信道风险感知的虚拟节点迁移方法. 电子与信息学报,

    15. [15]

      王剑书, 樊养余, 杜瑞, 吕国云. 适用于二维阵列的无格稀疏波达方向估计算法. 电子与信息学报,

    16. [16]

      张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪. 电子与信息学报,

    17. [17]

      胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法. 电子与信息学报,

    18. [18]

      杨磊, 李埔丞, 李慧娟, 方澄. 稳健高效通用SAR稀疏特征增强算法. 电子与信息学报,

    19. [19]

      张红旗, 黄睿, 常德显. 一种基于匹配博弈的服务链协同映射方法. 电子与信息学报,

    20. [20]

      牛燕雄, 陈梦琪, 张贺. 基于尺度不变特征变换的快速景象匹配方法. 电子与信息学报,

  • 图 1  海上通信损耗模型

    图 2  N为32时,p1为0.04时,3种算法的AMSE对比

    图 4  N为64时,p1为0.04时,3种算法的AMSE对比

    图 5  N为32时,p1为0.01时,3种算法的AMSE对比

    图 3  N为48时,p1为0.04时,3种算法的AMSE对比

    图 6  N为32时,p1为0.04时,3种算法的BER对比

    图 8  N为64时,p1为0.04时,3种算法的BER对比

    图 9  N为32时,p1为0.01时,3种算法的BER对比

    图 7  N为48时,p1为0.04时,3种算法的BER对比

    表 1  FBMPO算法的伪代码

     FBMPO算法:
     输入: 参数向量s, 观测矩阵ϕi, 迭代阈值K, R and L,;
     输出: ${\tilde h_{{\rm{mmse}}}}$;
        (1) Initialize ${\mu _{0,1}}$ by式(20)
        (2) for i ← 1 to L:
        (3)   ${{{b}}_i} \leftarrow {{{\varphi}} ^{ - 1}}{{{\phi}} _i};\;{{{\beta }}_i} \leftarrow {\left( {1 + {\sigma _1}^2{{\phi}} _i^{\rm{T}}{{{b}}_i}} \right)^{ - 1}}$;
        (4)   ${\mu _{1,i}}^* \leftarrow {\mu _{0,1}} + \dfrac{1}{2}\log \left( {\frac{{{{{\beta}} _i}}}{{{\sigma _1}^2}}} \right) + \dfrac{1}{2}{{{\beta}} _i}{\left| {{{{y}}^{\rm{T}}}{{{b}}_i}} \right|^2}$
            $ + {\rm{log}}\dfrac{{{p_1}}}{{1 - {p_1}}}$;
        (5) end for
        (6) for q ← 1 to K:
        (7)   ${\mu _{1,q}} \leftarrow {\mu _{1,i}}^*$; ${\rm{}}{b_{1,q}}^{\left( 1 \right)} \leftarrow {\mu _{1,i}}^*$; ${\rm{}}{c_{1,q}}^{\left( 1 \right)} \leftarrow {c_{1,i}}^*$;
            ${\beta _{1,q}}^{\left( 1 \right)} \leftarrow {\beta _{1,i}}^*$;
        (8) end for
        (9) ${{{\phi}} _i} \leftarrow {{{U}}_1}{{{W}}_2}{{{V}}_1}^T$; ${{{\phi}} _i}' \leftarrow {{{U}}_1}{{{W}}_2}'{{{V}}_1}^{\rm{T}}$;
        (10) for l ← 1 to R:
        (11)   ${{{\beta}} _i} \leftarrow {\left( {1 + {\sigma _1}^2{{{\phi}} _i}{{'}^{\rm{T}}}{{{b}}_i}} \right)^{ - 1}}$;
        (12)   ${{{\mu}} _i} \leftarrow {\mu ^{\left( {l - 1} \right)}} + \dfrac{1}{2}{\rm{lg}}{{{\beta}} _i} + \dfrac{1}{2}{{{\beta}} _i}{\left( {{{{s}}^{\rm{T}}}c_i^{\left( l \right)}} \right)^2} $
            $ + {\rm{lg}}\frac{{{p_1}}}{{1 - {p_1}}}$;
        (13)   $i_*^{\left( l \right)} \leftarrow {\rm{argma}}{{\rm{x}}_i}{\mu _i}$;
        (14)   ${G^{\left( l \right)}} \leftarrow {G^{\left( {l - 1} \right)}} \cup ^{\{i_{*}^{(l)}\}} $;
            $c_i^{\left( {l + 1} \right)} \leftarrow c_i^{\left( l \right)} - {{i}}_{i_*^{\left( l \right)}}^{\left( l \right)}{{{\beta }}_{i_*^{\left( l \right)}}}{{i}}_{i_*^{\left( l \right)}}^{{{\left( l \right)}^{\rm{T}}}}{{{\phi}} _i}$;
        (15) end for
        (16) 计算${\tilde h_{{\rm{mmse}}}}$ by式(31)
    下载: 导出CSV

    表 2  系统仿真参数设置

    参数仿真参数值
    信道抽头数系统信道带宽6410 MHz
    采样频率循环前缀长度10 MHz16
    调制方式BPSK
    非零抽头概率 p1{0.04,0.01}
    FFT/IFFT点数1024
    训练序列长度{32,48,64}
    下载: 导出CSV

    表 3  不同算法在不同训练序列时的运算时间(s)

    N=32N=48N=64
    OMPBCS6.428418.25418.041320.893111.459124.5212
    FBMPO11.461813.719415.0951
    下载: 导出CSV
  • 加载中
图(9)表(3)
计量
  • PDF下载量:  5
  • 文章访问数:  68
  • HTML全文浏览量:  65
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章