高级搜索

基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法

张颖 姚雨丰

引用本文: 张颖, 姚雨丰. 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法[J]. 电子与信息学报, 2020, 42(2): 534-540. doi: 10.11999/JEIT190102 shu
Citation:  Ying ZHANG, Yufeng YAO. Channel Estimation Algorithm of Maritime Sparse Channel Based on Fast Bayesian Matching Pursuit Optimization[J]. Journal of Electronics and Information Technology, 2020, 42(2): 534-540. doi: 10.11999/JEIT190102 shu

基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法

    作者简介: 张颖: 男,1968年生,博士,教授,博士生导师,研究方向为物联网、海事无线通信、无线自组织网络;
    姚雨丰: 男,1995年生,硕士生,研究方向为海事无线通信信道估计、无线信号传输技术
    通讯作者: 张颖,yingzhang@shmtu.eud.cn
  • 基金项目: 国家自然科学基金(61673259)

摘要: 正交频分复用(OFDM)系统中,由于频率发生选择性衰落会导致信道在数据传输中产生符号间干扰,因此接收机往往需要知道信道状态信息。而在海上通信的情况下,信道传输会受到多种外界因素的干扰,往往需要预先进行信道探测估计。为了提高估计性能,该文提出一种基于奇异值分解优化观测矩阵的快速贝叶斯匹配追踪稀疏信道估计优化算法(FBMPO),该算法不仅能够充分考虑海上通信的信道稀疏性,也能够降低信道的不确定性带来的影响。计算机仿真实验表明,与传统的信道估计算法相比,该算法能够提高信道估计的精确度。

English

    1. [1]

      XIAO Liping, LIANG Zhibo, and LIU Kai. A novel compressed sensing-based channel estimation method for OFDM system[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A(1): 322–326. doi: 10.1587/transfun.E100.A.322

    2. [2]

      DAI Linglong, WANG Zhaocheng, and YANG Zhixing. Compressive sensing based time domain synchronous OFDM transmission for vehicular communications[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 460–469. doi: 10.1109/JSAC.2013.SUP.0513041

    3. [3]

      DAI Linglong, WANG Zhaocheng, and YANG Zhixing. Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends[J]. IEEE Communications Magazine, 2012, 50(6): 150–158. doi: 10.1109/MCOM.2012.6211500

    4. [4]

      LI Weichang and PREISIG J C. Estimation of rapidly time-varying sparse channels[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927–939. doi: 10.1109/JOE.2007.906409

    5. [5]

      GE Lijun, CHENG Yitai, XU Wei, et al. Sparsity adaptive channel estimation based on compressed sensing for OFDM systems[J]. Journal of the Chinese Institute of Engineers, 2017, 40(2): 146–148. doi: 10.1080/02533839.2017.1287597

    6. [6]

      TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255–271. doi: 10.1109/JSTSP.2010.2042410

    7. [7]

      GUI Guan, WAN Qun, PENG Wei, et al. Sparse multipath channel estimation using compressive sampling matching pursuit algorithm[C]. The 7th IEEE VTS Asia Pacific Wireless Communications Symposium, Kaohsiung, China, 2010: 10–14.

    8. [8]

      GUI Guan, WAN Qun, and PENG Wei. Fast compressed sensing-based sparse multipath channel estimation with smooth L0 algorithm[C]. The 3rd International Conference on Communications and Mobile Computing, Qingdao, China, 2011: 242–245.

    9. [9]

      KARABULUT G Z and YONGACOGLU A. Sparse channel estimation using orthogonal matching pursuit algorithm[C]. The 60th IEEE Vehicular Technology Conference, Los Angeles, USA, 2004: 3880–3884.

    10. [10]

      ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2590–2603. doi: 10.1109/TWC.2015.2505315

    11. [11]

      CHEN Guorui. Channel estimation with Bayesian framework based on compressed sensing algorithm in multimedia transmission system[J]. Multimedia Tools and Applications, 2019, 78(7): 8813–8825. doi: 10.1007/s11042-018-6443-1

    12. [12]

      JOSE R, PAVITHRAN G, and ASWATHI C. Sparse channel estimation in OFDM systems using compressed sensing techniques in a Bayesian framework[J]. Computers & Electrical Engineering, 2017, 61: 173–183. doi: 10.1016/j.compeleceng.2017.03.014

    13. [13]

      BARBU O E, MANCHÓN C N, ROM C, et al. OFDM receiver for fast time-varying channels using block-sparse Bayesian learning[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10053–10057. doi: 10.1109/TVT.2016.2554611

    14. [14]

      PRASAD R, MURTHY C R, RAO B D. Joint channel estimation and data detection in MIMO-OFDM systems: A sparse Bayesian learning approach[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5369–5382. doi: 10.1109/TSP.2015.2451071

    15. [15]

      SCHNITER P, POTTER L C, and ZINIEL J. Fast Bayesian matching pursuit[C]. 2008 Information Theory and Applications Workshop, San Diego, USA, 2008: 326–333.

    16. [16]

      WEI Zhuangkun, HU Wenxiu, HAN Dahai, et al. Simultaneous channel estimation and signal detection in wireless ultraviolet communications combating inter-symbol-interference[J]. Optics Express, 2018, 26(3): 3260–3270. doi: 10.1364/OE.26.003260

    17. [17]

      HE Chengbing, HUANG Jianguo, ZHANG Qunfei, et al. Single carrier frequency domain equalizer for underwater wireless communication[C]. 2009 WRI International Conference on Communications and Mobile Computing, Kunming, China, 2009: 186–190.

    18. [18]

      QI Chenhao, YUE Guosen, WU Lenan, et al. Pilot design schemes for sparse channel estimation in OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1493–1505. doi: 10.1109/TVT.2014.2331085

    19. [19]

      胡强, 林云. 基于观测矩阵优化的自适应压缩感知算法[J]. 计算机应用, 2017, 37(12): 3381–3385. doi: 10.11772/j.issn.1001-9081.2017.12.3381
      HU Qiang and LIN Yun. Adaptive compressed sensing algorithm based on observation matrix optimization[J]. Journal of Computer Applications, 2017, 37(12): 3381–3385. doi: 10.11772/j.issn.1001-9081.2017.12.3381

    20. [20]

      CANDÈS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9–10): 589–592. doi: 10.1016/j.crma.2008.03.014

    1. [1]

      刘凯, 冯辉, 杨涛, 胡波. 上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法. 电子与信息学报, 2018, 40(1): 116-122.

    2. [2]

      姚志强, 李广龙, 王仕果, 游志宏. 基于Golay互补序列的压缩感知稀疏信道估计算法. 电子与信息学报, 2016, 38(2): 282-287.

    3. [3]

      张凯, 于宏毅, 胡赟鹏, 沈智翔. 稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法. 电子与信息学报, 2016, 38(9): 2255-2260.

    4. [4]

      朱行涛, 刘郁林, 赵翔. 基于均值循环卷积特性的UWB信道盲估计算法. 电子与信息学报, 2008, 30(10): 2381-2383.

    5. [5]

      解志斌, 薛同思, 田雨波, 邹维辰, 刘庆华, 马国华. 一种稀疏增强的压缩感知MIMO-OFDM信道估计算法. 电子与信息学报, 2013, 35(3): 665-670.

    6. [6]

      刘书君, 杨婷, 唐明春, 王品, 李勇明. 基于贝叶斯准则的随机共振算法研究. 电子与信息学报, 2017, 39(2): 293-300.

    7. [7]

      秦文, 彭启琮. 利用ICI自消除改善OFDM系统时变信道估计与均衡的性能. 电子与信息学报, 2008, 30(9): 2189-2192.

    8. [8]

      张晴川, 束锋, 孙锦涛, 王东明. 基于分布式空频码的协作通信系统的信道估计及优化. 电子与信息学报, 2010, 32(11): 2565-2570.

    9. [9]

      赵知劲, 汪百川, 尚俊娜, 徐春云. 基于随机集模型的MIMO-OFDM信道估计算法. 电子与信息学报, 2011, 33(2): 489-493.

    10. [10]

      徐微, 赵加祥, 王东, 艾小溪. 一种基于多模板的超宽带信道估计算法. 电子与信息学报, 2010, 32(10): 2468-2472.

    11. [11]

      唐怀东, 朱敏, 武岩波. 一种水声通信Turbo均衡中的软迭代信道估计算法. 电子与信息学报, 2013, 35(3): 677-682.

    12. [12]

      刘英男, 蒋伟, 姚春光, 梁庆林. 基于理想自相关训练序列的双选信道估计方法. 电子与信息学报, 2008, 30(10): 2423-2426.

    13. [13]

      叶新荣, 朱卫平, 张爱清, 孟庆民. OFDM系统双选择性慢衰落信道的压缩感知估计. 电子与信息学报, 2015, 37(1): 169-174.

    14. [14]

      于华楠, 郭树旭. 基于压缩感知的超宽带信道估计方法的研究. 电子与信息学报, 2012, 34(6): 1452-1456.

    15. [15]

      马天鸣, 施玉松, 李凤荣, 王营冠. 一种低复杂度自适应信道估计方案. 电子与信息学报, 2012, 34(8): 1980-1985.

    16. [16]

      物理层超高频射频识别标签信号分离中的信道估计. 电子与信息学报, 2016, 38(1): 119-126.

    17. [17]

      万显荣, 程熠瑶, 易建新, 张勋. DTMB外辐射源雷达参考信号重构信道估计新方法. 电子与信息学报, 2017, 39(5): 1044-1050.

    18. [18]

      吴钊, 张彧, 姜龙, 宋健. 基于宽带突发单载波频域均衡传输的时域精细信道估计方法. 电子与信息学报, 2016, 38(5): 1166-1172.

    19. [19]

      黄敏, 李兵兵. 基于整体最小二乘的联合信道估计及OFDM信号检测算法. 电子与信息学报, 2014, 36(6): 1448-1453.

    20. [20]

      居美艳, 冉明. 多用户MC DS-CDMA系统中的时频域信道估计方法. 电子与信息学报, 2008, 30(10): 2537-2540.

  • 图 1  海上通信损耗模型

    图 2  N为32时,p1为0.04时,3种算法的AMSE对比

    图 4  N为64时,p1为0.04时,3种算法的AMSE对比

    图 5  N为32时,p1为0.01时,3种算法的AMSE对比

    图 3  N为48时,p1为0.04时,3种算法的AMSE对比

    图 6  N为32时,p1为0.04时,3种算法的BER对比

    图 8  N为64时,p1为0.04时,3种算法的BER对比

    图 9  N为32时,p1为0.01时,3种算法的BER对比

    图 7  N为48时,p1为0.04时,3种算法的BER对比

    表 1  FBMPO算法的伪代码

     FBMPO算法
     输入:参数向量s, 观测矩阵${{\varphi } }_i$,迭代阈值K, R and L
     输出:${\tilde h_{ {\rm{MMSE} } } }$;
        (1) Initialize ${\mu _{0,1}}$ by式(20)
        (2) for i ← 1 to L:
        (3)   ${{{b}}_i} \leftarrow {{{\varphi}} ^{ - 1}}{{{\phi}} _i};\;{{{\beta }}_i} \leftarrow {\left( {1 + {\sigma _1}^2{{\phi}} _i^{\rm{T}}{{{b}}_i}} \right)^{ - 1}}$;
        (4)   ${\mu _{1,i} }^* \leftarrow {\mu _{0,1} } + \dfrac{1}{2}\lg \left( {\frac{ { { {{\beta} } _i} } }{ { {\sigma _1}^2} } } \right) + \dfrac{1}{2}{ {{\beta} } _i}{\left| { { {{y} }^{\rm{T} } }{ {{b} }_i} } \right|^2}$
              $ + {\rm{lg} }\dfrac{ { {p_1} } }{ {1 - {p_1} } }$;
        (5) end for
        (6) for q ← 1 to K:
        (7)   ${\mu _{1,q}} \leftarrow {\mu _{1,i}}^*$; ${\rm{}}{b_{1,q}}^{\left( 1 \right)} \leftarrow {\mu _{1,i}}^*$; ${\rm{}}{c_{1,q}}^{\left( 1 \right)} \leftarrow {c_{1,i}}^*$;
            ${\beta _{1,q}}^{\left( 1 \right)} \leftarrow {\beta _{1,i}}^*$;
        (8) end for
        (9) ${{{\phi}}_i} \leftarrow {{{U}}_1} {{W}_2} {{{V}}_1}^{\rm T}$; ${{{\phi}} _i}' \leftarrow {{{U}}_1}{{{W}}_2}'{{{V}}_1}^{\rm{T}}$;
        (10) for l ← 1 to R:
        (11)   ${{{\beta}} _i} \leftarrow {\left( {1 + {\sigma _1}^2{{{\phi}} _i}{{'}^{\rm{T}}}{{{b}}_i}} \right)^{ - 1}}$;
        (12)   ${{{\mu}} _i} \leftarrow {\mu ^{\left( {l - 1} \right)}} + \dfrac{1}{2}{\rm{lg}}{{{\beta}} _i} + \dfrac{1}{2}{{{\beta}} _i}{\left( {{{{s}}^{\rm{T}}}c_i^{\left( l \right)}} \right)^2} $
            $ + {\rm{lg}}\frac{{{p_1}}}{{1 - {p_1}}}$;
        (13)   $i_*^{\left( l \right)} \leftarrow {\rm{argma}}{{\rm{x}}_i}{\mu _i}$;
        (14)   ${G^{\left( l \right)}} \leftarrow {G^{\left( {l - 1} \right)}} \cup ^{\{i_{*}^{(l)}\}} $;
            $c_i^{\left( {l + 1} \right)} \leftarrow c_i^{\left( l \right)} - {{i}}_{i_*^{\left( l \right)}}^{\left( l \right)}{{{\beta }}_{i_*^{\left( l \right)}}}{{i}}_{i_*^{\left( l \right)}}^{{{\left( l \right)}^{\rm{T}}}}{{{\phi}} _i}$;
        (15) end for
        (16) 计算${\tilde h_{ {\rm{MMSE} } } }$ by式(30)
    下载: 导出CSV

    表 2  系统仿真参数设置

    参数仿真参数值
    信道抽头数系统信道带宽6410 MHz
    采样频率循环前缀长度10 MHz16
    调制方式BPSK
    非零抽头概率 p1{0.04,0.01}
    FFT/IFFT点数1024
    训练序列长度{32,48,64}
    下载: 导出CSV

    表 3  不同算法在不同训练序列时的运算时间(s)

    N=32N=48N=64
    OMP6.42848.041311.4591
    BCS18.254120.893124.5212
    FBMPO11.461813.719415.0951
    下载: 导出CSV
  • 加载中
图(9)表(3)
计量
  • PDF下载量:  43
  • 文章访问数:  550
  • HTML全文浏览量:  392
文章相关
  • 通讯作者:  张颖, yingzhang@shmtu.eud.cn
  • 收稿日期:  2019-02-21
  • 录用日期:  2019-09-01
  • 网络出版日期:  2019-09-06
  • 刊出日期:  2020-02-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章