高级搜索

基于循环平稳特性的欠采样宽带数字预失真研究

兰榕 胡欣 邹峰 王刚 罗积润

引用本文: 兰榕, 胡欣, 邹峰, 王刚, 罗积润. 基于循环平稳特性的欠采样宽带数字预失真研究[J]. 电子与信息学报, 2020, 42(5): 1274-1280. doi: 10.11999/JEIT190105 shu
Citation:  Rong LAN, Xin HU, Feng ZOU, Gang WANG, Jirun LUO. Research of Low Sampling Frequency Broadband Digital Predistortion with Cyclostationary Characteristics[J]. Journal of Electronics and Information Technology, 2020, 42(5): 1274-1280. doi: 10.11999/JEIT190105 shu

基于循环平稳特性的欠采样宽带数字预失真研究

    作者简介: 兰榕: 男,1992年生,博士生,研究方向为行波管功率放大器宽带数字预失真技术;
    胡欣: 男,1985年生,工程师,研究方向为飞行器航电综合、卫星通信、智能信号处理等;
    邹峰: 男,1983年生,工程师,研究方向为行波管放大器;
    王刚: 男,1971年生,研究员,研究方向为微波电子信息系统与电路;
    罗积润: 男,1957年生,研究员,研究方向为高功率微波的产生与应用
    通讯作者: 罗积润,Luojirun@mail.ie.ac.cn
摘要: 为了解决行波管(TWT)宽带数字预失真(DPD)中反馈回路ADC采样率过高的问题,该文利用信号的循环平稳特性证实可通过欠采样下的输出信号估计功放的非线性模型参数,然后由功放非线性模型参数和输入信号可恢复出与高采样率下效果相似的功放输出信号,最后通过传统的间接学习结构对功放进行数字预失真以实现行波管的线性化。为了验证该方法,利用20 MHz LTE信号驱动一只55 W的X波段行波管放大器(TWTA)。数字预失真反馈回路的ADC采样率从61.44 Msps降低至6.144 Msps和3.072 Msps,但线性化效果变化不大,表明欠采样方法是有效的。

English

    1. [1]

      DUNN Z, YEARY M, FULTON C, et al. Wideband digital predistortion of solid-state radar amplifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2452–2466. doi: 10.1109/TAES.2016.150142

    2. [2]

      WOOD J. System-level design considerations for Digital Pre-Distortion of wireless base station transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1880–1890. doi: 10.1109/TMTT.2017.2659738

    3. [3]

      YU Chao, GUAN Lei, ZHU Erni, et al. Band-limited Volterra series-based digital predistortion for wideband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 4198–4208. doi: 10.1109/TMTT.2012.2222658

    4. [4]

      LIU Youjiang, YAN J J, DABAG H T, et al. Novel technique for wideband digital predistortion of power amplifiers with an under-sampling ADC[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(11): 2604–2617. doi: 10.1109/TMTT.2014.2360398

    5. [5]

      MA Yuelin, YAMAO Y, AKAIWA Y, et al. Wideband digital predistortion using spectral extrapolation of band-limited feedback signal[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(7): 2088–2097. doi: 10.1109/TCSI.2013.2295897

    6. [6]

      LIU Ying, PAN Wensheng, SHAO Shihai, et al. A general digital predistortion architecture using constrained feedback bandwidth for wideband power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1544–1555. doi: 10.1109/TMTT.2015.2416184

    7. [7]

      ZHANG Qi, LIU Youjiang, ZHOU Jie, et al. A band-divided memory polynomial for wideband digital predistortion with limited bandwidth feedback[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(10): 922–926. doi: 10.1109/TCSII.2015.2457793

    8. [8]

      WANG Zonghao, CHEN Wenhua, SU Gongzhe, et al. Low feedback sampling rate digital predistortion for wideband wireless transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3528–3539. doi: 10.1109/TMTT.2016.2602216

    9. [9]

      GUAN Ning, WU Nan, and WANG Hua. Digital predistortion of wideband power amplifier with single undersampling ADC[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 1016–1018. doi: 10.1109/LMWC.2017.2750059

    10. [10]

      LIU Ying, PAN Wensheng, SHAO Shihai, et al. A new digital predistortion using indirect learning with constrained feedback bandwidth for wideband power amplifiers[C]. 2014 IEEE MTT-S International Microwave Symposium, Tampa, USA, 2014: 1-3. doi: 10.1109/MWSYM.2014.6848259.

    11. [11]

      GARDNER W A. Introduction to Random Processes: With Applications to Signals and Systems[M]. 2nd ed. New York, USA: McGraw-Hill, 1990: 302–310.

    12. [12]

      REED I. On a moment theorem for complex Gaussian processes[J]. IRE Transactions on Information Theory, 1962, 8(3): 194–195. doi: 10.1109/TIT.1962.1057719

    13. [13]

      ZHOU G T and KENNEY J S. Predicting spectral regrowth of nonlinear power amplifiers[J]. IEEE Transactions on Communications, 2002, 50(5): 718–722. doi: 10.1109/TCOMM.2002.1006553

    14. [14]

      BRILLINGER D R. Time Series: Data Analysis and Theory[M]. San Francisco, USA: Holden Day, 1981: 19-27.

    15. [15]

      GARDNER W A. Spectral correlation of modulated signals: Part I - analog modulation[J]. IEEE Transactions on Communications, 1987, 35(6): 584–594. doi: 10.1109/TCOM.1987.1096820

    16. [16]

      GARDNER W A, BROWN III W A, and CHEN C K. Spectral correlation of modulated signals: Part II - digital modulation[J]. IEEE Transactions on Communications, 1987, 35(6): 595–601. doi: 10.1109/TCOM.1987.1096816

    1. [1]

      李根, 马彦恒, 侯建强, 徐公国. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法. 电子与信息学报, 2020, 42(0): 1-8.

    2. [2]

      张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移. 电子与信息学报, 2020, 42(5): 1216-1222.

    3. [3]

      陈容, 陈岚, WAHLAArfan Haider. 基于公式递推法的可变计算位宽的循环冗余校验设计与实现. 电子与信息学报, 2020, 42(5): 1261-1267.

    4. [4]

      王立辉, 闫守礼, 李清. 一种轻量级数据加密标准循环掩码实现方案. 电子与信息学报, 2020, 41(0): 1-8.

    5. [5]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报, 2020, 41(0): 1-9.

    6. [6]

      刘文斌, 吴倩, 杜玉改, 方刚, 石晓龙, 许鹏. 基于个性化网络标志物的药物推荐方法研究. 电子与信息学报, 2020, 42(6): 1340-1347.

    7. [7]

      陈家祯, 吴为民, 郑子华, 叶锋, 连桂仁, 许力. 基于虚拟光学的视觉显著目标可控放大重建. 电子与信息学报, 2020, 42(5): 1209-1215.

    8. [8]

      刘汝卿, 蒋衍, 姜成昊, 李锋, 朱精果. 应用于激光雷达信号处理系统的放大电路接口设计. 电子与信息学报, 2020, 42(7): 1636-1642.

    9. [9]

      孙健健, 徐建华, 成海峰, 祝庆霖, 韩煦. 基于金属销钉封装的Ka波段固态功率放大模块研究. 电子与信息学报, 2020, 42(0): 1-7.

  • 图 1  实验电路框图

    图 2  不同采样率下的预失真输出频谱

    表 1  不同采样率下预失真的邻近信道功率比

    预失真采样率(Msps)ACPR-/+20 MHz(dBc)ACPR-/+40 MHz(dBc)
    无预失真–19.24/–19.94–37.84/–39.34
    61.44–47.42/–47.78–49.30/49.00
    6.144–47.07/–47.55–48.72/–48.15
    3.072–46.87/–46.40–48.06/–48.40
    下载: 导出CSV
  • 加载中
图(2)表(1)
计量
  • PDF下载量:  20
  • 文章访问数:  543
  • HTML全文浏览量:  261
文章相关
  • 通讯作者:  罗积润, Luojirun@mail.ie.ac.cn
  • 收稿日期:  2019-02-25
  • 录用日期:  2019-10-20
  • 网络出版日期:  2020-01-20
  • 刊出日期:  2020-05-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章