高级搜索

博弈条件下雷达波形设计策略研究

李伟 王泓霖 郑家毅 徐建业 赵俊龙 邹鲲

引用本文: 李伟, 王泓霖, 郑家毅, 徐建业, 赵俊龙, 邹鲲. 博弈条件下雷达波形设计策略研究[J]. 电子与信息学报, 2019, 41(11): 2654-2660. doi: 10.11999/JEIT190114 shu
Citation:  Wei LI, Honglin WANG, Jiayi ZHENG, Jianye XU, Junlong ZHAO, Kun ZOU. Research on Radar Waveform Design Strategy under Game Condition[J]. Journal of Electronics and Information Technology, 2019, 41(11): 2654-2660. doi: 10.11999/JEIT190114 shu

博弈条件下雷达波形设计策略研究

    作者简介: 李伟: 男,1978年生,副教授,研究方向为新体制雷达信号处理;
    王泓霖: 男,1995年生,博士生,研究方向为雷达及电子战系统;
    郑家毅: 男,1991年生,助理工程师,研究方向为雷达信号处理;
    徐建业: 男,1992年生,博士生,研究方向为信道编码及深度学习;
    赵俊龙: 男,1995年生,硕士生,研究方向为雷达信号处理、雷达波形设计;
    邹鲲: 男,1976年生,副教授,研究方向为雷达信号处理、统计信号处理、复杂电磁环境下的目标探测等
    通讯作者: 王泓霖,wanghonglin821@outlook.com
  • 基金项目: 国家自然科学基金(61571456),航空科学基金(20160196001)

摘要: 为提高电子战中弹载雷达检测性能,该文提出基于纳什均衡的雷达波形设计方法。首先建立电子战条件下雷达与干扰信号博弈模型,基于最大化信干噪比(SINR)准则,分别设计了雷达和干扰的波形策略;然后通过数学推导论证了博弈纳什均衡解的存在性,设计了一种重复剔除严格劣势的多次迭代注水方法来实现纳什均衡;通过二步注水法推导了非均衡的maxmin优化方案;最后通过仿真实验测试不同策略下雷达检测性能。仿真结果证明,基于纳什均衡的雷达信号设计有助于提升博弈条件下雷达检测性能,对比未博弈时,雷达检测概率最高可提升12.02%,较maxmin策略最高可提升3.82%,证明所设计的纳什均衡策略更接近帕累托最优。

English

    1. [1]

      HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335

    2. [2]

      翁木云, 郑家毅, 李伟, 等. 低RCS目标检测的制导雷达波形优化方法[J]. 华中科技大学学报: 自然科学版, 2019, 47(2): 41–46. doi: 10.13245/j.hust.190208
      WENG Muyun, ZHENG Jiayi, LI Wei, et al. Guidance radar waveform optimization method for low RCS target detection under interference conditions[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2019, 47(2): 41–46. doi: 10.13245/j.hust.190208

    3. [3]

      BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642

    4. [4]

      PILLAI S U, OH H S, YOULA D C, et al. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2): 577–584. doi: 10.1109/18.825822

    5. [5]

      KAY S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 31–41. doi: 10.1109/jstsp.2007.897046

    6. [6]

      ROMERO R A, BAE J, and GOODMAN N A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 912–927. doi: 10.1109/TAES.2011.5751234

    7. [7]

      AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093

    8. [8]

      WU Linlong, BABU P, and PALOMAR D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 1526–1540. doi: 10.1109/TSP.2017.2787115

    9. [9]

      IMANI S, NAYEBI M M, and GHORASHI S A. Colocated MIMO radar SINR maximization under ISL and PSL constraints[J]. IEEE Signal Processing Letters, 2018, 25(3): 422–426. doi: 10.1109/LSP.2018.2796603

    10. [10]

      BUTT F A, NAQVI I H, and RIAZ U. Hybrid phased-MIMO radar: A novel approach with optimal performance under electronic countermeasures[J]. IEEE Communications Letters, 2018, 22(6): 1184–1187. doi: 10.1109/LCOMM.2018.2828408

    11. [11]

      WANG Li, WU Huaqing, and STÜBER G L. Cooperative jamming-aided secrecy enhancement in P2P communications with social interaction constraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 1144–1158. doi: 10.1109/TVT.2016.2553121

    12. [12]

      GUAN Yanpeng and GE Xiaohua. Distributed secure estimation over wireless sensor networks against random multichannel jamming attacks[J]. IEEE Access, 2017, 5: 10858–10870. doi: 10.1109/ACCESS.2017.2713807

    13. [13]

      WANG Lulu, WANG Hongqiang, WONG K K, et al. Minimax robust jamming techniques based on signal-to-interference-plus-noise ratio and mutual information criteria[J]. IET Communications, 2014, 8(10): 1859–1867. doi: 10.1049/iet-com.2013.1054

    14. [14]

      FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958

    15. [15]

      SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 687–699. doi: 10.1109/TSP.2011.2169251

    16. [16]

      GAO Hao, WANG Jian, JIANG Chunxiao, et al. Equilibrium between a statistical MIMO radar and a jammer[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 461–466. doi: 10.1109/RADAR.2015.7131043.

    17. [17]

      LAN Xing, LI Wei, WANG Xingliang, et al. MIMO radar and target stackelberg game in the presence of clutter[J]. IEEE Sensors Journal, 2015, 15(12): 6912–6920. doi: 10.1109/JSEN.2015.2466812

    18. [18]

      KAY S M and LUO Pengfei. Fundamentals of Statistical Signal Processing: Estimation and Detection Theory[M]. Beijing: Publishing House of Electronics Industry, 2014: 425–445.

    19. [19]

      邹鲲. 认知雷达的未知目标检测[J]. 电子与信息学报, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254
      ZOU Kun. Unknown target detection for cognitive radar[J]. Journal of Electronics &Information Technology, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254

    20. [20]

      CARABALLO M A, MÁRMOL A M, MONROY L, et al. Cournot competition under uncertainty: Conservative and optimistic equilibria[J]. Review of Economic Design, 2015, 19(2): 145–165. doi: 10.1007/s10058-015-0171-z

    21. [21]

      FUDENBERG D and TIROLE J. Game Theory[M]. Cambridge: MIT Press, 1991: 18–26.

  • 图 1  弹载雷达发射-接收信号模型

    图 2  不同注水策略下SINR变化情况

    图 3  迭代周期内SINR变化

    图 4  信号功率分配策略

    图 5  雷达波形功率谱设计

    图 6  纳什均衡雷达功率分配策略

    图 7  maxmin雷达功率分配策略

    图 8  不同策略间雷达检测概率变化

    表 1  迭代注水算法

     (1) 初始化双方策略) $\left| {S({f_k})} \right| = {\left| {S({f_k})} \right|_0}$, $J({f_k}) = J{({f_k})_0}$
     (2) 最大化雷达效益$\mathop {\max }\limits_{{\rm{SINR}}} \left( {{{\left| {S({f_k})} \right|}^*},\lambda } \right)$
     (3) 更新雷达策略$\left| {S({f_k})} \right| = {\left| {S({f_k})} \right|^ * }$
     (4) 最大化干扰效益$\mathop {\min }\limits_{{\rm{SINR}}} \left( {J{{({f_k})}^*},\gamma } \right)$
     (5) 更新干扰策略$J({f_k}) = J{({f_k})^ * }$
     (6) 重复步骤(2)—步骤(5)直到${\left| {S({f_k})} \right|^ * }$与$J{({f_k})^ * }$保持不变
    下载: 导出CSV

    表 2  各频带功率分配策略及性能

    策略子带1(W)子带2(W)子带3(W)子带4(W)子带5(W)SINR(dB)检测概率(%)运算时间(s)
    纳什均衡雷达7.03137.531218.232139.521627.68829.76152.721.537
    干扰6.39166.526118.062440.617228.4126
    maxmin雷达6.03374.344312.872040.547036.20279.55449.310.485
    干扰6.25897.710718.357339.650328.0359
    下载: 导出CSV
  • 加载中
图(8)表(2)
计量
  • PDF下载量:  65
  • 文章访问数:  1129
  • HTML全文浏览量:  420
文章相关
  • 通讯作者:  王泓霖, wanghonglin821@outlook.com
  • 收稿日期:  2019-02-26
  • 录用日期:  2019-09-01
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章