高级搜索

基于深度卷积神经网络的多元医学信号多级上下文自编码器

袁野 贾克斌 刘鹏宇

引用本文: 袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, doi: 10.11999/JEIT190135 shu
Citation:  Ye YUAN, Kebin JIA, Pengyu LIU. Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190135 shu

基于深度卷积神经网络的多元医学信号多级上下文自编码器

    作者简介: 袁野: 男,1991年生,博士生,研究方向为深度学习、健康信息学;
    贾克斌: 男,1962年生,教授,研究方向为多媒体信息系统、模式识别;
    刘鹏宇: 女,1979年生,副教授,研究方向为多媒体信息系统
    通讯作者: 贾克斌,kebinj@bjut.edu.cn
  • 基金项目: 国家自然科学基金(81871394),先进信息网络北京实验室(040000546618017)

摘要: 多元医学信号的典型代表有多模态睡眠图和多通道脑电图等,采用无监督深度学习表征多元医学信号是目前健康信息学领域中的一个研究热点。为了解决现有模型没有充分结合医学信号多元时序结构特点的问题,该文提出了一种无监督的多级上下文深度卷积自编码器。首先改进传统卷积神经网络结构,提出一种多元卷积自编码模块,以提取信号片段内的多元上下文特征;其次,提出采用语义学习技术对信号片段间的时序信息进行自编码,进一步提取时序上下文特征;最后通过共享特征表示设计目标函数,训练端到端的多级上下文自编码器。实验结果表明,该文所提模型在两种应用于不同医疗场景下的多模态和多通道数据集(UCD和CHB-MIT)上表现均优于其它无监督特征学习方法,能有效提高多元医学信号的融合特征表达能力,对提高临床时序数据的分析效率有着重要意义。

English

    1. [1]

      JOHNSON A E W, GHASSEMI M M, NEMATI S, et al. Machine learning and decision support in critical care[J]. Proceedings of the IEEE, 2016, 104(2): 444–466. doi: 10.1109/JPROC.2015.2501978

    2. [2]

      RAVI D, WONG C, DELIGIANNI F, et al. Deep learning for health informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 4–21. doi: 10.1109/JBHI.2016.2636665

    3. [3]

      BOOSTANI R, KARIMZADEH F, and NAMI M. A comparative review on sleep stage classification methods in patients and healthy individuals[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 77–91. doi: 10.1016/j.cmpb.2016.12.004

    4. [4]

      YUAN Ye, XUN Guangxu, JIA Kebin, et al. A multi-view deep learning framework for EEG seizure detection[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 83–94. doi: 10.1109/JBHI.2018.2871678

    5. [5]

      ACAR E, LEVIN-SCHWARTZ Y, CALHOUN V D, et al. Tensor-based fusion of EEG and fMRI to understand neurological changes in schizophrenia[C]. Proceedings of 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4.

    6. [6]

      JIA Xiaowei, LI Kang, LI Xiaoyi, et al. A novel semi-supervised deep learning framework for affective state recognition on EEG signals[C]. Proceedings of 2014 IEEE International Conference on Bioinformatics and Bioengineering, Boca Raton, USA, 2014: 30–37.

    7. [7]

      LÄNGKVIST M, KARLSSON L, and LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42: 11–24. doi: 10.1016/j.patrec.2014.01.008

    8. [8]

      HOLZINGER A. Machine Learning for Health Informatics[M]. Cham: Springer, 2016: 161–182.

    9. [9]

      SUPRATAK A, LI Ling, and GUO Yike. Feature extraction with stacked autoencoders for epileptic seizure detection[C]. Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014: 4184–4187.

    10. [10]

      YAN Bo, WANG Yong, LI Yuheng, et al. An EEG signal classification method based on sparse auto-encoders and support vector machine[C]. Proceedings of 2016 IEEE/CIC International Conference on Communications in China, Chengdu, China, 2016: 1–6.

    11. [11]

      LIN Qin, YE Shuqun, HUANG Xiumei, et al. Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning[C]. Proceedings of the 12th International Conference on Intelligent Computing, Lanzhou, China, 2016: 802–810.

    12. [12]

      YANG Jianli, BAI Yang, LI Guojun, et al. A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression[J]. Bio-medical Materials and Engineering, 2015, 26(S1): S1549–S1558. doi: 10.3233/BME-151454

    13. [13]

      XUN Guangxu, JIA Xiaowei, and ZHANG Aidong. Detecting epileptic seizures with electroencephalogram via a context-learning model[J]. BMC Medical Informatics and Decision Making, 2016, 16(Suppl 2): 70. doi: 10.1186/s12911-016-0310-7

    14. [14]

      LI Xiaoyi, JIA Xiaowei, XUN Guangxu, et al. Improving EEG feature learning via synchronized facial video[C]. Proceedings of 2015 IEEE International Conference on Big Data, Santa Clara, USA, 2015: 843–848.

    15. [15]

      YUAN Ye, XUN Guangxu, SUO Qiuling, et al. Wave2Vec: Deep representation learning for clinical temporal data[J]. Neurocomputing, 2019, 324: 31–42. doi: 10.1016/j.neucom.2018.03.074

    16. [16]

      YUAN Ye, XUN Guangxu, JIA Kebin, et al. A multi-context learning approach for EEG epileptic seizure detection[J]. BMC Systems Biology, 2018, 12(6): 47–57. doi: 10.1186/s12918-018-0626-2

    17. [17]

      ZHANG Junming, WU Yan, BAI Jing, et al. Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers[J]. Transactions of the Institute of Measurement and Control, 2016, 38(4): 435–451. doi: 10.1177/0142331215587568

    18. [18]

      YULITA I N, FANANY M I, and ARYMURTHY A M. Sequence-based sleep stage classification using conditional neural fields[J]. arXiv preprint arXiv:1610.01935 , 2016.

    19. [19]

      LÄNGKVIST M, KARLSSON L, and LOUTFI A. Sleep stage classification using unsupervised feature learning[J]. Advances in Artificial Neural Systems, 2012, 2012: 107046. doi: 10.1155/2012/107046

    20. [20]

      MASCI J, MEIER U, CIREŞAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Finland, 2011: 52–59.

    21. [21]

      HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647

    22. [22]

      MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 3111–3119.

    23. [23]

      CHOI E, BAHADORI M T, SEARLES E, et al. Multi-layer representation learning for medical concepts[C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 1495–1504.

    24. [24]

      SHOEB A H. Application of machine learning to epileptic seizure onset detection and treatment[D]. [Ph.D. dissertation], Massachusetts Institute of Technology, 2009.

    25. [25]

      GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215–E220. doi: 10.1161/01.CIR.101.23.e215

    26. [26]

      FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861–874. doi: 10.1016/j.patrec.2005.10.010

    27. [27]

      DAVIS J and GOADRICH M. The relationship between precision-recall and ROC curves[C]. Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 233–240.

    28. [28]

      HE Haibo and GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263–1284. doi: 10.1109/TKDE.2008.239

    29. [29]

      ZEILER M D. ADADELTA: An adaptive learning rate method[J]. arXiv preprint arXiv:1212.5701, 2012.

    1. [1]

      杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法. 电子与信息学报,

    2. [2]

      王鑫, 李可, 宁晨, 黄凤辰. 基于深度卷积神经网络和多核学习的遥感图像分类方法. 电子与信息学报,

    3. [3]

      郭晨, 简涛, 徐从安, 何友, 孙顺. 基于深度多尺度一维卷积神经网络的雷达舰船目标识别. 电子与信息学报,

    4. [4]

      秦华标, 曹钦平. 基于FPGA的卷积神经网络硬件加速器设计. 电子与信息学报,

    5. [5]

      王巍, 周凯利, 王伊昌, 王广, 袁军. 基于快速滤波算法的卷积神经网络加速器设计. 电子与信息学报,

    6. [6]

      冯浩, 黄坤, 李晶, 高榕, 刘东华, 宋成芳. 基于深度学习的混合兴趣点推荐算法. 电子与信息学报,

    7. [7]

      王斐, 吴仕超, 刘少林, 张亚徽, 魏颖. 基于脑电信号深度迁移学习的驾驶疲劳检测. 电子与信息学报,

    8. [8]

      贺丰收, 何友, 刘准钆, 徐从安. 卷积神经网络在雷达自动目标识别中的研究进展. 电子与信息学报,

    9. [9]

      谢湘, 张立强, 王晶. 残差网络在婴幼儿哭声识别中的应用. 电子与信息学报,

    10. [10]

      吴培良, 杨霄, 毛秉毅, 孔令富, 侯增广. 一种视角无关的时空关联深度视频行为识别方法. 电子与信息学报,

    11. [11]

      孙彦景, 石韫开, 云霄, 朱绪冉, 王赛楠. 基于多层卷积特征的自适应决策融合目标跟踪算法. 电子与信息学报,

    12. [12]

      桑海峰, 陈紫珍. 基于双向门控循环单元的3D人体运动预测. 电子与信息学报,

    13. [13]

      陈鸿昶, 吴彦丞, 李邵梅, 高超. 基于行人属性分级识别的行人再识别. 电子与信息学报,

    14. [14]

      刘静, 刘涵, 黄开宇, 苏立玉. 基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用. 电子与信息学报,

    15. [15]

      刘政怡, 段群涛, 石松, 赵鹏. 基于多模态特征融合监督的RGB-D图像显著性检测. 电子与信息学报,

    16. [16]

      寇广, 王硕, 张达. 基于深度堆栈编码器和反向传播算法的网络安全态势要素识别. 电子与信息学报,

    17. [17]

      盖杉, 鲍中运. 基于改进深度卷积神经网络的纸币识别研究. 电子与信息学报,

    18. [18]

      王莉, 曹一凡, 杜高明, 刘冠宇, 王晓蕾, 张多利. 一种低延迟的3维高效视频编码中深度建模模式编码器. 电子与信息学报,

    19. [19]

      兰巨龙, 于倡和, 胡宇翔, 李子勇. 基于深度增强学习的软件定义网络路由优化机制. 电子与信息学报,

    20. [20]

      刘政怡, 徐天泽. 基于优化的极限学习机和深度层次的RGB-D显著检测. 电子与信息学报,

  • 图 1  本文提出的多级上下文深度卷积自编码器结构图

    图 2  不同特征表示模型在CHB-MIT和UCD数据库上的ROC和PR曲线

    图 3  不同特征学习模型在CHB-MIT数据库上对不同超参数配置的影响

    图 4  不同特征学习模型在UCD数据库上对不同超参数配置对的影响

    表 1  多元卷积自编码模块具体配置参数

    编码单元卷积层非线性变换池化层
    元内编码单元$1 \times 3 \times 16$ReLU$1 \times 2$
    元间编码单元$C \times 3 \times 8$ReLU$1 \times 2$
    解码单元反卷积层非线性变换反池化层
    元间解码单元$C \times 3 \times 8$ReLU$1 \times 2$
    元内解码单元$1 \times 3 \times 16$ReLU$1 \times 2$
    下载: 导出CSV

    表 2  CHB-MIT数据库上的方法比较结果

    方法CHB-MIT数据库
    AUC-ROCAUC-PRF1分数准确率
    PCA0.8291 ± 0.04340.7021 ± 0.08720.6421 ± 0.02230.8768 ± 0.0223
    SAE0.5934 ± 0.03770.4180 ± 0.11890.0668 ± 0.04150.7987 ± 0.0309
    CAE0.8657 ± 0.03050.7646 ± 0.08810.6277 ± 0.12460.8690 ± 0.0267
    Med2Vec0.8155 ± 0.11810.5870 ± 0.16700.6066 ± 0.23630.8351 ± 0.0359
    Skip-gram+0.9090 ± 0.03560.7467 ± 0.15400.6288 ± 0.20400.8898 ± 0.0173
    CtxFusionEEG0.9287 ± 0.03060.7833 ± 0.11470.7202 ± 0.14850.9025 ± 0.0104
    Wave2Vec0.9035 ± 0.03710.8839 ± 0.02610.8267 ± 0.01840.9210 ± 0.0099
    m-CAE0.8946 ± 0.04010.8727 ± 0.01890.8417 ± 0.01310.9324 ± 0.0058
    mCtx-CAE0.9372 ± 0.04950.8980 ± 0.03330.8493 ± 0.01910.9412 ± 0.0110
    下载: 导出CSV

    表 3  UCD数据库上的方法比较结果

    方法UCD数据库
    AUC-ROCAUC-PRF1分数准确率
    PCA0.8177 ± 0.01420.5764 ± 0.01720.5204 ± 0.02750.6193 ± 0.0638
    SAE0.7068 ± 0.13720.4965 ± 0.09510.2760 ± 0.18150.4917 ± 0.1364
    CAE0.8386 ± 0.03760.5710 ± 0.04290.5180 ± 0.07010.6208 ± 0.0961
    Med2Vec0.7479 ± 0.07960.4836 ± 0.10460.3997 ± 0.13610.5619 ± 0.0619
    Skip-gram+0.8010 ± 0.09920.5406 ± 0.09950.4342 ± 0.17310.5884 ± 0.1077
    CtxFusionEEG0.7941 ± 0.14850.6358 ± 0.07090.5171 ± 0.19940.6375 ± 0.1074
    Wave2Vec0.8161 ± 0.05070.5984 ± 0.06980.5268 ± 0.06610.6408 ± 0.0723
    m-CAE0.8446 ± 0.03610.5727 ± 0.02150.5600 ± 0.04820.6562 ± 0.0767
    mCtx-CAE0.8648 ± 0.02580.6423 ± 0.04520.5655 ± 0.02280.6734 ± 0.0562
    下载: 导出CSV
  • 加载中
图(4)表(3)
计量
  • PDF下载量:  9
  • 文章访问数:  213
  • HTML全文浏览量:  102
文章相关
  • 通讯作者:  贾克斌, kebinj@bjut.edu.cn
  • 收稿日期:  2019-03-07
  • 录用日期:  2019-08-17
  • 网络出版日期:  2019-08-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章