高级搜索

基于双向参考集矩阵度量学习的行人再识别

陈莹 许潇月

引用本文: 陈莹, 许潇月. 基于双向参考集矩阵度量学习的行人再识别[J]. 电子与信息学报, doi: 10.11999/JEIT190159 shu
Citation:  Ying CHEN, Xiaoyue XU. Matrix Metric Learning for Person Re-identification Based on Bidirectional Reference Set[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190159 shu

基于双向参考集矩阵度量学习的行人再识别

    作者简介: 陈莹: 女,1976年生,教授,博士生导师,研究方向为模式识别、信息融合;
    许潇月: 女,1994年生,硕士,研究方向为行人再识别
    通讯作者: 陈莹,chenying@jiangnan.edu.cn
  • 基金项目: 国家自然科学基金(61573168)

摘要: 针对行人再识别中由于外观差异不显著导致特征描述不准确的问题,该文提出一种基于双向参考集矩阵度量学习的行人再识别算法。首先通过互近邻算法获得每个摄像头下的互近邻参考集,为保证参考集的鲁棒性,联合考虑各摄像头下的互近邻参考集获得双向参考集。通过双向参考集挖掘出困难样本进行特征描述,从而得到准确的外观差异描述。最后利用该特征描述进行更有效的矩阵度量学习。在多个公开数据集上的实验结果证明了该算法比现有算法具有更好的行人再识别性能。

English

    1. [1]

      FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360–2367.

    2. [2]

      李幼蛟, 卓力, 张菁, 等. 行人再识别技术综述[J]. 自动化学报, 2018, 44(9): 1554–1568. doi: 10.16383/j.aas.2018.c170505
      LI Youjiao, ZHUO Li, ZHANG Jing, et al. A survey of person re-identification[J]. Acta Automatica Sinica, 2018, 44(9): 1554–1568. doi: 10.16383/j.aas.2018.c170505

    3. [3]

      ZHENG Lilei, DUFFNER S, IDRISSI K, et al. Pairwise identity verification via linear concentrative metric learning[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 324–335. doi: 10.1109/TCYB.2016.2634011

    4. [4]

      WANG Zheng, HU Ruimin, CHEN Chen, et al. Person reidentification via discrepancy matrix and matrix metric[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 3006–3020. doi: 10.1109/TCYB.2017.2755044

    5. [5]

      CHEN Xiaojing, AN Le, and BHANU B. Reference set based appearance model for tracking across non-overlapping cameras[C]. 2013 International Conference on Distributed Smart Cameras, Palm Springs, USA, 2013: 1–6.

    6. [6]

      AN Le, KAFAI M, YANG Songfan, et al. Person reidentification with reference descriptor[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(4): 776–787. doi: 10.1109/TCSVT.2015.2416561

    7. [7]

      LIAO Shengcai and LI S Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3685–3693.

    8. [8]

      ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3652–3661.

    9. [9]

      SUN Yipeng, TAO Xiaoming, LI Yang, et al. Robust two-dimensional principal component analysis via alternating optimization[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 340–344.

    10. [10]

      GRAY D, BRENNAN S, and TAO Hai. Evaluating appearance models for recognition, reacquisition, and tracking[C]. The 10th IEEE International Workshop on Performance Evaluation for Tracking and Surveillance, Rio de Janeiro, 2007: 1–7.

    11. [11]

      ROTH P M, HIRZER M, KÖSTINGER M, et al. Mahalanobis distance learning for person re-identification[M]. GONG Shaogang, CRISTANI M, YAN Shuicheng, et al. Person Re-Identification. London: Springer, 2014: 247–267.

    12. [12]

      LI Wei, ZHAO Rui, and WANG Xiaogang. Human reidentification with transferred metric learning[C]. The 11th Asian Conference on Computer Vision, Daejeon, Korea, 2012: 31–44.

    13. [13]

      WANG Xiaogang, DORETTO G, SEBASTIAN T, et al. Shape and appearance context modeling[C]. 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007: 1–8.

    14. [14]

      MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical gaussian descriptor for person re-identification[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1363–1372.

    15. [15]

      MATSUKAWA T and SUZUKI E. Person re-identification using CNN features learned from combination of attributes[C]. The 23rd International Conference on Pattern Recognition, Cancun, Mexico, 2016: 2428–2433.

    16. [16]

      MIGNON A and JURIE F. PCCA: A new approach for distance learning from sparse pairwise constraints[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2666–2672.

    17. [17]

      MA Bingpeng, SU Yu, and JURIE F. Bicov: A novel image representation for person re-identification and face verification[C]. British Machive Vision Conference, Surrey, UK, 2012: 57. 1–57.11.

    18. [18]

      KÖSTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2288–2295.

    19. [19]

      ZHAO Rui, OUYANG Wanli, and WANG Xiaogang. Unsupervised salience learning for person re-identification[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3586–3593.

    20. [20]

      LI Zhen, CHANG Shiyu, LIANG Feng, et al. Learning locally-adaptive decision functions for person verification[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3610–3617.

    21. [21]

      ZHAO Rui, OUYANG Wanli, and WANG Xiaogang. Learning mid-level filters for person re-identification[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 144–151.

    22. [22]

      YANG Yang, YANG Jimei, YAN Junjie, et al. Salient color names for person re-identification[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 536–551.

    23. [23]

      LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2197–2206.

    24. [24]

      AN Le, KAFAI M, YANG Songfan, et al. Person reidentification with reference descriptor[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(4): 776–787. doi: 10.1109/TCSVT.2015.2416561

    25. [25]

      YI Dong, LEI Zhen, LIAO Shengcai, et al. Deep metric learning for person re-identification[C]. 2014 International Conference on Pattern Recognition, Stockholm, Sweden, 2014: 34–39.

    26. [26]

      CHEN Shizhe, GUO Chaochun, and LAI Jianhuang. Deep ranking for person re-identification via joint representation learning[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2353–2367. doi: 10.1109/TIP.2016.2545929

    27. [27]

      WANG Jin, WANG Zheng, GAO Changxin, et al. DeepList: Learning deep features with adaptive listwise constraint for person reidentification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(3): 513–524. doi: 10.1109/tcsvt.2016.2586851

    28. [28]

      DE CARVALHO PRATES R F and SCHWARTZ W R. CBRA: Color-based ranking aggregation for person re-identification[C]. 2015 IEEE International Conference on Image Processing, Quebec City, Canada, 2015: 1975–1979.

    29. [29]

      SHEN Yang, LIN Weiyao, YAN Junchi, et al. Person re-identification with correspondence structure learning[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3200–3208.

    30. [30]

      CHEN Yingcong, ZHENG Weishi, and LAI Jianhuang. Mirror representation for modeling view-specific transform in person re-identification[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 3402–3408.

    31. [31]

      YAO Wenbin, WENG Zhenyu, and ZHU Yuesheng. Diversity regularized metric learning for person re-identification[C]. 2016 IEEE International Conference on Image Processing, Phoenix, USA, 2016: 4264–4268.

    32. [32]

      AHMED E, JONES M, and MARKS T K. An improved deep learning architecture for person re-identification[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3908–3916.

    1. [1]

      陈鸿昶, 吴彦丞, 李邵梅, 高超. 基于行人属性分级识别的行人再识别. 电子与信息学报,

    2. [2]

      周智恒, 刘楷怡, 黄俊楚, 陈增群. 一种基于等距度量学习策略的行人重识别改进算法. 电子与信息学报,

    3. [3]

      何怡刚, 佘培亮, 佐磊, 张超群. 超高频射频识别近场系统互耦效应中频率偏移研究. 电子与信息学报,

    4. [4]

      王晶, 樊宇, 赵鼎, 杨晨, 王刚, 罗积润. 考虑回旋共振增强效应的平面单栅注波互作用线性分析. 电子与信息学报,

    5. [5]

      李炜, 李全龙, 刘政怡. 基于加权的K近邻线性混合显著性目标检测. 电子与信息学报,

    6. [6]

      陈艳浩, 刘中艳, 周丽宴. 基于差异混合掩码与混沌Gyrator变换的光学图像加密算法. 电子与信息学报,

    7. [7]

      王健, 黄越, 赵国生, 赵中楠. 面向任务代价差异的移动群智感知激励模型. 电子与信息学报,

    8. [8]

      周莉, 张歆茗, 郭伟震, 王琰. 基于改进冲突度量的多证据直接融合算法. 电子与信息学报,

    9. [9]

      刘焕淋, 林振宇, 王欣, 陈勇, 向敏, 马跃. 弹性光网络中基于安全性感知的差异化虚拟光网络的映射策略. 电子与信息学报,

    10. [10]

      孙兵, 阮怀林, 吴晨曦, 钟华. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法. 电子与信息学报,

    11. [11]

      李如春, 程云霄, 覃亚丽. 稀疏信号结构性噪声干扰下的感知矩阵优化. 电子与信息学报,

    12. [12]

      陈少真, 张怡帆, 任炯炯. 具有最小异或数的最大距离可分矩阵的构造. 电子与信息学报,

    13. [13]

      张爱丽, 刘浩, 武林, 牛立杰, 张成, 陈雪, 吴季. G矩阵修正法在一维综合孔径微波辐射计成像中的应用. 电子与信息学报,

    14. [14]

      盖建新, 杜昊辰, 刘琦, 童子权. 基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法. 电子与信息学报,

    15. [15]

      刘静, 刘涵, 黄开宇, 苏立玉. 基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用. 电子与信息学报,

    16. [16]

      李付鹏, 刘敬彪, 王光义, 王康泰. 基于混沌集的图像加密算法. 电子与信息学报,

    17. [17]

      罗洪艳, 朱子岩, 林睿, 林臻, 廖彦剑. 基于掩盖效应和梯度信息的无参考噪声图像质量评价改进算法. 电子与信息学报,

    18. [18]

      张刚, 赵畅畅, 张天骐. 短参考正交多用户差分混沌键控方案的性能分析. 电子与信息学报,

    19. [19]

      刘毅, 吴炯, 杨普, 南海涵, 张海林. 面向OFDM的同时同频全双工双向高谱效中继方案. 电子与信息学报,

    20. [20]

      李文洁, 葛凤培, 张鹏远, 颜永红. 双向长短时记忆模型训练中的空间平滑正则化方法研究. 电子与信息学报,

  • 图 1  差异矩阵描述子

    图 2  算法框架图

    图 3  双向参考集与随机参考集结果对比图

    表 1  两个摄像头下参考集里的样本标签的重叠率$\sigma $(%)

    行人Person aPerson bPerson cPerson d
    重叠率$\sigma $20501025
    下载: 导出CSV

    表 2  在3个数据集上采用不同特征的自身评估

    方法VIPeRCHUK01PRID450S
    Rank-1Rank-5Rank-1Rank-5Rank-1Rank-5
    ${{\rm{L}}_{\rm{2}}}$范数(GoG)19.0038.0024.1751.3332.4460.00
    F范数(GoG)20.1741.8334.5069.8352.2280.22
    ${\rm{BR}}{{\rm{M}}^{\rm{2}}}{\rm{L}}$(GoG)38.3369.1745.3370.5054.4480.67
    ${{\rm{L}}_{\rm{2}}}$范数(FCTNN)29.0046.0037.4458.0031.7357.96
    F范数(FCTNN)30.0049.8346.5672.1144.4072.84
    ${\rm{BR}}{{\rm{M}}^{\rm{2}}}{\rm{L}}$(FCTNN)41.3368.1747.4277.4445.5172.96
    下载: 导出CSV

    表 3  VIPeR数据集上的结果

    方法Rank-1Rank-5Rank-10Rank-20
    PCCA[16]19.348.964.980.3
    KISSME[18]19.648.062.277.0
    BiCov[17]20.643.256.168.0
    eSDC[19]26.346.458.672.8
    DeepMetric[25]28.259.373.486.4
    Midfilter[21]29.152.565.979.9
    LADF[20]30.064.080.092.0
    FTCNN[15]+XQDA31.259.874.083.5
    RD[24]33.365.178.388.5
    GoG[14]+XQDA37.367.477.289.6
    SCNCD[22]37.868.581.290.4
    ${\rm{D}}{{\rm{M}}^{\rm{3}}}$[4]38.367.277.089.3
    DeepRanking[26]38.469.281.390.4
    LOMO+XQDA[23]40.068.580.591.0
    DeepList[27]40.569.180.191.2
    ${\rm{BR}}{{\rm{M}}^2}{\rm{L}}$(GoG)38.3369.1781.5089.50
    ${\rm{BR}}{{\rm{M}}^2}{\rm{L}}$(FTCNN)41.3368.1782.0090.33
    下载: 导出CSV

    表 4  PRID 450S数据集上的结果

    方法Rank-1Rank-5Rank-10Rank-20
    KISSME[18]33.059.871.079.0
    CBRA[28]26.457.171.083.2
    CSL[29]44.471.682.289.8
    Mirror[30]55.479.387.893.9
    DRML[31]56.482.290.2
    DM3[4]56.783.188.494.7
    ${\rm{BR}}{{\rm{M}}^2}{\rm{L}}$(GoG)54.4480.6789.7895.56
    ${\rm{BR}}{{\rm{M}}^2}{\rm{L}}$(FTCNN)59.2084.5394.5399.78
    下载: 导出CSV

    表 5  CUHK01数据集上的结果

    方法Rank-1Rank-5Rank-10Rank-20
    SDALF[1]9.922.630.341.0
    TML[12]20.043.556.069.3
    MidFilter[21]34.355.165.074.9
    ImprovedDeep[32]47.571.080.0
    RD[24]31.168.579.1
    ${\rm{D}}{{\rm{M}}^{\rm{3}}}$[4]43.770.177.488.7
    ${\rm{BR}}{{\rm{M}}^2}{\rm{L}}$(GoG)45.3370.5086.5090.00
    ${\rm{BR}}{{\rm{M}}^2}{\rm{L}}$(FTCNN)47.4277.4488.3398.33
    下载: 导出CSV
  • 加载中
图(3)表(5)
计量
  • PDF下载量:  4
  • 文章访问数:  678
  • HTML全文浏览量:  98
文章相关
  • 通讯作者:  陈莹, chenying@jiangnan.edu.cn
  • 收稿日期:  2019-03-18
  • 录用日期:  2019-05-24
  • 网络出版日期:  2019-07-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章