高级搜索

基于Lyapunov优化的隐私感知计算卸载方法

赵星 彭建华 游伟

引用本文: 赵星, 彭建华, 游伟. 基于Lyapunov优化的隐私感知计算卸载方法[J]. 电子与信息学报, 2020, 42(3): 704-711. doi: 10.11999/JEIT190170 shu
Citation:  Xing ZHAO, Jianhua PENG, Wei YOU. A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization[J]. Journal of Electronics and Information Technology, 2020, 42(3): 704-711. doi: 10.11999/JEIT190170 shu

基于Lyapunov优化的隐私感知计算卸载方法

    作者简介: 赵星: 男,1990年生,博士生,研究方向为移动通信网安全、隐私保护技术;
    彭建华: 男,1966年生,教授、博士生导师,主要研究方向为无线移动通信网络、信息安全;
    游伟: 男,1984年生,博士,讲师,主要研究方向为移动通信网络安全、新一代移动通信网络技术
    通讯作者: 赵星,ndsc_zx@163.com
  • 基金项目: 国家重点研发计划网络空间安全专项(2016YFB0801605),国家自然科学基金创新群体项目(61521003),国家自然科学基金(61801515)

摘要: 移动边缘计算(MEC)中计算卸载决策可能暴露用户特征,导致用户被锁定。针对此问题,该文提出一种基于Lyapunov优化的隐私感知计算卸载方法。首先,该方法定义卸载任务中的隐私量,并引入隐私限制使各MEC节点上卸载任务的累积隐私量尽可能小;然后,提出假任务机制权衡终端能耗和隐私保护的关系,当系统因隐私限制无法正常执行计算卸载时,在MEC节点生成虚假的卸载任务以降低累积隐私量;最后,建立隐私感知计算卸载模型,并基于Lyapunov优化原理求解。仿真结果表明,基于Lyapunov优化的隐私感知卸载算法(LPOA)能使用户的累积隐私量稳定在0附近,且总卸载频率与不考虑隐私的决策一致,有效保护了用户隐私,同时保持了较低的平均能耗。

English

    1. [1]

      JI Xinsheng, HUANG Kaizhi, JIN Liang, et al. Overview of 5G security technology[J]. Science China Information Sciences, 2018, 61(8): 081301. doi: 10.1007/s11432-017-9426-4

    2. [2]

      ABBAS N, ZHANG Yan, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450–465. doi: 10.1109/JIOT.2017.2750180

    3. [3]

      FLORES H, HUI Pan, TARKOMA S, et al. Mobile code offloading: From concept to practice and beyond[J]. IEEE Communications Magazine, 2015, 53(3): 80–88. doi: 10.1109/MCOM.2015.7060486

    4. [4]

      MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318

    5. [5]

      MENG Xianling, WANG Wei, WANG Yitu, et al. Delay-optimal computation offloading for computation-constrained mobile edge networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8647703.

    6. [6]

      MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964

    7. [7]

      ZHANG Guanglin, ZHANG Wenqian, CAO Yu, et al. Energy-delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4642–4655. doi: 10.1109/TII.2018.2843365

    8. [8]

      ZHANG Peiyun, ZHOU Mengchu, and FORTINO G. Security and trust issues in Fog computing: A survey[J]. Future Generation Computer Systems, 2018, 88: 16–27. doi: 10.1016/j.future.2018.05.008

    9. [9]

      NI Jianbing, ZHANG Aiqing, LIN Xiaodong, et al. Security, privacy, and fairness in fog-based vehicular crowdsensing[J]. IEEE Communications Magazine, 2017, 55(6): 146–152. doi: 10.1109/MCOM.2017.1600679

    10. [10]

      HE Xiaofan, LIU Juan, JIN Richeng, et al. Privacy-aware offloading in mobile-edge computing[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253985.

    11. [11]

      MIN Minghui, WAN Xiaoyue, XIAO Liang, et al. Learning-based privacy-aware offloading for healthcare IoT with energy harvesting[J]. IEEE Internet of Things Journal, 2019, 6(3): 4307–4316. doi: 10.1109/JIOT.2018.2875926

    12. [12]

      HE Xiaofan, JIN Richeng, and DAI Huaiyu. Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT[J]. IEEE Internet of Things Journal, 2019, 6(3): 4547–4555. doi: 10.1109/JIOT.2018.2878718

    13. [13]

      HE Ting, CIFTCIOGLU E N, WANG Shiqiang, et al. Location privacy in mobile edge clouds: A chaff-based approach[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2625–2636. doi: 10.1109/JSAC.2017.2760179

    14. [14]

      MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201

    15. [15]

      LIN Xue, WANG Yanzhi, CHANG N, et al. Concurrent task scheduling and dynamic voltage and frequency scaling in a real-time embedded system with energy harvesting[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(11): 1890–1902. doi: 10.1109/TCAD.2016.2523450

    16. [16]

      ZHANG Weiwen, WEN Yonggang, GUAN K, et al. Energy-optimal mobile cloud computing under stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2013, 12(9): 4569–4581. doi: 10.1109/TWC.2013.072513.121842

    17. [17]

      NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. San Rafael, Calif.: Morgan & Claypool Publishers, 2010: 1–211.

  • 图 1  系统模型

    图 2  隐私量变化分析

    图 3  不同时隙个数下平均能耗对比

    图 4  各算法的卸载决策

    图 5  变量V 的影响

    图 6  MEC数量的影响

    表 1  LPOA

     初始化:设置各MEC节点的累积隐私量$Q{\rm{(}}t{\rm{) = 0}}$
     (1) For t=1,2, ···,T Do
     (2) 观察当前无线信道增益${\rm{\{ }}h_k^2{\rm{(}}t{\rm{)\} }}_{k = 1}^{{N_{{\rm{MEC}}}}}$和任务截止时间$\xi (t)$;
     (3) 根据策略1计算${f^*}{\rm{(}}t{\rm{)}},E_{\rm{L}}^*{\rm{(}}t{\rm{)}},\left[ {p_k^*{\rm{(}}t{\rm{)}},E_k^*{\rm{(}}t{\rm{)}}} \right]_{k = 1}^{{N_{{\rm{MEC}}}}}$;
     (4) 根据式(9)获得MEC节点候选集$M{\rm{(}}t{\rm{)}}$;
     (5) If $\left( {M{\rm{(}}t{\rm{) = }}\varnothing } \right)||\left( {E_{\rm{L}}^*{\rm{(}}t{\rm{)}} < E_{{k_{{\rm{min}}}}}^*{\rm{(}}t{\rm{)}}} \right)$
     (6)   If ${f^*}{\rm{(}}t{\rm{) > }}{f_{{\rm{max}}}}$丢弃任务,$E{\rm{(}}t{\rm{) = }}{E_0}$;
     (7)   Else 本地处理,$E{\rm{(}}t{\rm{) = }}E_{\rm{L}}^*{\rm{(}}t{\rm{)}}$;
     (8)   End If
     (9) Else
     (10)   根据式(2)求得隐私量$q(t)$;
     (11)   根据策略2求得最优解${\alpha ^*}{\rm{(}}t{\rm{)}}$;
     (12)   根据${\alpha ^*}{\rm{(}}t{\rm{)}}$执行卸载并根据式(5)更新隐私量$Q{\rm{(}}t{\rm{)}}$;
     (13) End If
     (14) End For
    下载: 导出CSV

    表 2  参数设置

    参数取值
    单位时隙长度${l_s}$1 ms
    信道增益$h_k^2$服从指数分布,均值$\overline {h_k^2} $–90 dB
    信道增益$h_k^2$服从指数分布,量化步长${\delta _{h_k^2}}$$\overline {h_k^2} /100$
    上行链路带宽$W$1 MHz
    噪声功率密度${N_0}$${10^{ - 19}}\;{\rm{W/Hz}}$
    CPU最大频率${f_{\max}}$1.5 GHz
    能耗系数$\kappa $${10^{ - 28}}$[16]
    终端天线最大发射功率${p_{\max}}$1 W
    任务大小b${10^3}$ bit
    处理1 bit数据所需CPU循环数$\beta $700
    任务截止时间$\xi {\rm{(}}t{\rm{)}}$服从均匀分布$\left\{ {0.1{l_s},0.2{l_s}, ··· ,{l_s}} \right\}$
    任务丢弃代价E0$10 \cdot \kappa \beta bf_{{\rm{max}}}^2$
    下载: 导出CSV
  • 加载中
图(6)表(2)
计量
  • PDF下载量:  82
  • 文章访问数:  1555
  • HTML全文浏览量:  1100
文章相关
  • 通讯作者:  赵星, ndsc_zx@163.com
  • 收稿日期:  2019-03-21
  • 录用日期:  2019-08-20
  • 网络出版日期:  2019-09-02
  • 刊出日期:  2020-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章