高级搜索

军车隐秘编队的无线紫外光通信最优多跳中继研究

赵太飞 李永明 许杉 王世奇

引用本文: 赵太飞, 李永明, 许杉, 王世奇. 军车隐秘编队的无线紫外光通信最优多跳中继研究[J]. 电子与信息学报, doi: 10.11999/JEIT190172 shu
Citation:  Taifei ZHAO, Yongming LI, Shan XU, Shiqi WANG. Research on Optimum Multi-hop Relay of Wireless Ultraviolet Communication in Military Vehicle Secret Formation[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190172 shu

军车隐秘编队的无线紫外光通信最优多跳中继研究

    作者简介: 赵太飞: 男,1978年生,教授,研究方向为通信网络、无线光通信技术;
    李永明: 男,1990年生,硕士生,研究方向为无线紫外光中继通信网络;
    许杉: 女,1995年生,硕士生,研究方向为无人机蜂群、无线紫外光通信网络;
    王世奇: 男,1994年生,硕士生,研究方向为无线紫外光探测气溶胶技术
    通讯作者: 赵太飞,zhaotaifei@163.com
  • 基金项目: 国家自然科学基金(61971345),陕西省教育厅服务地方专项计划项目(17JF024),西安市科学计划项目(CXY1835(4)),陕西省重点产业链创新计划项目(2017ZDCXL-GY-06-01),西安市碑林区科技计划项目(GX1921)

摘要: 无线紫外光通信成为强电磁干扰下的有效通信手段,满足复杂战场环境下车队执行战略物资运输和弹车队隐蔽行驶时车辆间保持可靠隐秘通信的需求。在行驶中每辆车自身作为其它车辆的中继,通过多跳方式为非视线内车辆之间建立稳定可靠的通信链路。因此,基于紫外光单次散射模型,该文研究了最优多跳中继问题,理论分析了收发仰角与频谱效率的关系,依据使频谱效率最大化原则,得出最优跳数近似表达式。仿真结果表明,不同距离移位范围和不同收发仰角都对应特定的最优跳数值,与最优能量计算方法相比,最大频谱效率计算方法在小功率传输时有更好的传输能力,并且达到节约功率的需求。紫外光长距离通信时,系统性能并不随着协作中继数的增加而提高,选取合适的中继数及小发射仰角和大接收仰角的结构配置,系统可获得较高的传输能力。

English

    1. [1]

      WU Menglong, HAN Dahai, ZHANG Xiang, et al. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems[J]. Optics Express, 2014, 22(5): 5422–5430. doi: 10.1364/OE.22.005422

    2. [2]

      XU Changming, ZHANG Hongming, and CHENG Julian. Effects of haze particles and fog droplets on NLOS ultraviolet communication channels[J]. Optics Express, 2015, 23(18): 23259–23269. doi: 10.1364/OE.23.023259

    3. [3]

      ZHAO Taifei, GAO Yingying, and ZHANG Ying. An area coverage algorithm for non-line-of-sight ultraviolet communication network[J]. Photonic Network Communications, 2016, 32(2): 269–280. doi: 10.1007/s11107-016-0622-7

    4. [4]

      YUAN Renzhi and MA Jianshe. Review of ultraviolet non-line-of-sight communication[J]. China Communications, 2016, 13(6): 63–75. doi: 10.1109/CC.2016.7513203

    5. [5]

      张曦文, 赵尚弘, 李勇军, 等. 基于空分复用的多信道机间紫外光通信定向MAC协议[J]. 激光技术, 2016, 40(3): 451–455. doi: 10.7510/jgjs.issn.1001-3806.2016.03.032
      ZHANG Xiwen, ZHAO Shanghong, LI Yongjun, et al. Multi-channel directional media access control protocol for airborne ultraviolet communication based on space division multiplexing[J]. Laser Technology, 2016, 40(3): 451–455. doi: 10.7510/jgjs.issn.1001-3806.2016.03.032

    6. [6]

      HE Qunfeng, XU Zhengyuan, and BRIAN S. Non-line-of-sight serial relayed link for optical wireless communications[C]. Proceedings of MILCOM 2010 Military Communications Conference, San Jose, USA, 2010: 1588–1593. doi: 10.1109/MILCOM.2010.5680180.

    7. [7]

      VAVOULAS A, SANDALIDIS H G, and VAROUTAS D. Node isolation probability for serial ultraviolet UV-C multi-hop networks[J]. Journal of Optical Communications and Networking, 2011, 3(9): 750–757. doi: 10.1364/JOCN.3.000750

    8. [8]

      李济波, 吴晓军, 王红星, 等. 紫外光非直视通信抗干扰中继链路方法及其功率需求分析[J]. 激光与光电子学进展, 2015, 52(3): 030601. doi: 10.3788/LOP52.030601
      LI Jibo, WU Xiaojun, WANG Hongxing, et al. Anti-interference relayed link method and power requirement analysis for ultraviolet non-line-of-sight communication[J]. Laser &Optoelectronics Progress, 2015, 52(3): 030601. doi: 10.3788/LOP52.030601

    9. [9]

      ARDAKANI M H, HEIDARPOUR A R, and UYSAL M. Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels[J]. Journal of Optical Communications and Networking, 2017, 9(1): 109–118. doi: 10.1364/JOCN.9.000109

    10. [10]

      柯熙政, 陈锦妮. 紫外光无线传感器网络节能的研究与仿真[J]. 激光技术, 2013, 37(2): 251–255. doi: 10.7510/jgjs.issn.1001-3806.2013.02.028
      KE Xizheng and CHEN Jinni. Research of energy-saving wireless sensor network based on UV light[J]. Laser Technology, 2013, 37(2): 251–255. doi: 10.7510/jgjs.issn.1001-3806.2013.02.028

    11. [11]

      何华, 柯熙政, 赵太飞. 紫外光非视距单次散射链路模型的研究[J]. 光学学报, 2010, 30(11): 3148–3152. doi: 10.3788/AOS20103011.3148
      HE Hua, KE Xizheng, and ZHAO Taifei. Research of ultraviolet non-line-of-sight single scattering link model[J]. Acta Optica Sinica, 2010, 30(11): 3148–3152. doi: 10.3788/AOS20103011.3148

    12. [12]

      赵太飞, 金丹, 宋鹏. 无线紫外光非直视通信信道容量估算与分析[J]. 中国激光, 2015, 42(6): 0605001. doi: 10.3788/CJL201542.0605001
      ZHAO Taifei, JIN Dan, and SONG Peng. Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication[J]. Chinese Journal of Lasers, 2015, 42(6): 0605001. doi: 10.3788/CJL201542.0605001

    13. [13]

      CHEN Gang, XU Zhengyuan, DING Haipeng, et al. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications[J]. Optics Express, 2009, 17(5): 3929–3940. doi: 10.1364/OE.17.003929

    14. [14]

      FENG Hao and CIMINI L J. On the optimum number of hops in a multi-hop linear network with randomly located nodes[C]. Proceedings of 2012 IEEE International Conference on Communications, Ottawa, Canada, 2012: 2329–2333. doi: 10.1109/ICC.2012.6363752.

    15. [15]

      CHEN Deqiang, HAENGGI M, and LANEMAN J N. Distributed spectrum-efficient routing algorithms in wireless networks[C]. Proceedings of the 2007 41st Annual Conference on Information Sciences and Systems, Baltimore, USA, 2007: 5297–5305. doi: 10.1109/CISS.2007.4298387.

    16. [16]

      CORLESS R M, GONNET G H, HARE D E G, et al. On the lambert W function[J]. Advances in Computational Mathematics, 1996, 5(1): 329–359. doi: 10.1007/BF02124750

    17. [17]

      朱秉诚. 自由空间光通信中继系统研究[D]. [博士论文], 东南大学, 2015: 19–22.
      ZHU Bingcheng. Free-space optical communications with relays[D]. [Ph.D. dissertation], Southeast University, 2015: 19–22.

    18. [18]

      王智. 部队车队行驶的注意事项[J]. 汽车运用, 2007(1): 34. doi: 10.3969/j.issn.1002-8374.2007.01.028
      WANG Zhi. Precautions for troop convoy driving[J]. Auto Application, 2007(1): 34.(未找到本条文献英文信息, 请核对) doi: 10.3969/j.issn.1002-8374.2007.01.028

  • 图 1  无线紫外光非直视单次散射通信模型

    图 2  无线紫外光多跳中继节点随机分布模型

    图 3  βT=10°, βR=40°的3种通信方式对比

    图 4  βT=βR=30°的3种通信方式对比

    图 5  βT=40°, βR=20°的3种通信方式对比

    图 6  相同Nop下的不同收发仰角频谱效率。

    图 7  最优跳数对比

    图 8  两种方法传输能力对比

    图 9  不同距离移位范围的频谱效率

    图 10  不同S到D距离的频谱效率

    表 1  系统主要仿真参数

    参数数值
    紫外波长260 nm
    PMT探测效率0.3
    滤光片透过率0.6
    吸收系数0.802×10–3 m–1
    米氏散射系数0.284×10–3 m–1
    瑞利散射系数0.266×10–3 m–1
    普朗克常数h6.6×10–34
    下载: 导出CSV
  • 加载中
图(10)表(1)
计量
  • PDF下载量:  2
  • 文章访问数:  357
  • HTML全文浏览量:  224
文章相关
  • 通讯作者:  赵太飞, zhaotaifei@163.com
  • 收稿日期:  2019-03-21
  • 录用日期:  2020-03-04
  • 网络出版日期:  2020-04-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章