高级搜索

基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究

吕晓德 孙正豪 刘忠胜 张汉良 刘平羽

引用本文: 吕晓德, 孙正豪, 刘忠胜, 张汉良, 刘平羽. 基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究[J]. 电子与信息学报, 2020, 42(5): 1288-1296. doi: 10.11999/JEIT190178 shu
Citation:  Xiaode LÜ, Zhenghao SUN, Zhongsheng LIU, Hanliang ZHANG, Pingyu LIU. Research on Suppressing Co-channel Interference of Passive Radar Based on Blind Source Separation Using Second Order Statistics[J]. Journal of Electronics and Information Technology, 2020, 42(5): 1288-1296. doi: 10.11999/JEIT190178 shu

基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究

    作者简介: 吕晓德: 男,1969年生,研究员,研究方向为基于阵列技术的的新体制雷达系统及其应用;
    孙正豪: 男,1995年生,硕士生,研究方向为无源雷达信号处理;
    刘忠胜: 男,1977年生,副研究员,研究方向为干涉SAR信号处理;
    张汉良: 男,1993年生,硕士生,研究方向为基于LTE信号的无源雷达信号处理;
    刘平羽: 男,1994年生,硕士生,研究方向为无源雷达信号处理
    通讯作者: 孙正豪,sunzhenghao17@mails.ucas.ac.cn
摘要: 针对基于长期演进(LTE)信号的无源雷达存在同频基站干扰的问题,该文提出一种基于2阶统计量的盲源分离算法,该算法是在卷积混合模型下,通过多通道最小均方(LMS)算法实现分离信号之间的相关性最小。由于各发射基站信号之间统计不相关,当分离信号之间的相关性达到最小时,完成观测信号的分离。在此基础上,改进了传统无源雷达信号处理的流程,增加了分离同频干扰基站直达波和多径杂波的步骤,实现了对同频干扰基站杂波的抑制。通过仿真分析,验证了算法的有效性,为基于LTE信号的无源雷达数据处理提供了参考。

English

    1. [1]

      GRIFFITHS H D and BAKER C J. Passive coherent location radar systems. Part 1: Performance prediction[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 153–159. doi: 10.1049/ip-rsn:20045082

    2. [2]

      OLSEN K E and ASEN W. Bridging the gap between civilian and military passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 4–12. doi: 10.1109/MAES.2017.160030

    3. [3]

      CUI Haixia, LEUNG V C M, LI Shaoqian, et al. LTE in the unlicensed band: Overview, challenges, and opportunities[J]. IEEE Wireless Communications, 2017, 24(4): 99–105. doi: 10.1109/MWC.2016.1600031WC

    4. [4]

      SALAH A A, ABDULLAH R S A R, ISMAIL A, et al. Feasibility study of LTE signal as a new illuminators of opportunity for passive radar applications[C]. 2013 IEEE International RF and Microwave Conference, Penang, Malaysia, 2013: 258–262.

    5. [5]

      SALAH A A, Abdullah R S A R, ISMAIL A, et al. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications[J]. Electronics Letters, 2014, 50(7): 545–547. doi: 10.1049/el.2014.0237

    6. [6]

      ABDULLAH R S A R, AZIZ N H A, RASHID N E A, et al. Analysis on target detection and classification in LTE based passive forward scattering radar[J]. Sensors, 2016, 16(10): 1607. doi: 10.3390/s16101607

    7. [7]

      DAN Yangpeng, WAN Xianrong, YI Jianxin, et al. Ambiguity function analysis of Long Term Evolution transmission for passive radar[C]. The 12th International Symposium on Antennas, Propagation and EM theory, Hangzhou, China, 2018: 1–4.

    8. [8]

      王本静, 易建新, 万显荣, 等. LTE外辐射源雷达帧间模糊带分析与抑制[J]. 雷达学报, 2018, 7(4): 514–522. doi: 10.12000/JR18025
      WANG Benjing, YI Jianxin, WAN Xianrong, et al. Inter-frame ambiguity analysis and suppression of LTE signal for passive radar[J]. Journal of Radars, 2018, 7(4): 514–522. doi: 10.12000/JR18025

    9. [9]

      吕晓德, 张汉良, 杨璟茂, 等. 基于LTE信号的外辐射源雷达副峰特性及抑制方法研究[J]. 电子与信息学报, 2018, 40(10): 2498–2505. doi: 10.11999/JEIT180019
      LÜ Xiaode, ZHANG Hanliang, YANG Jingmao, et al. Research on characteristics and suppression methods of side peaks of passive radar based on LTE signal[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2498–2505. doi: 10.11999/JEIT180019

    10. [10]

      王海涛. 外辐射源雷达信号处理若干问题研究[D]. [博士论文], 西安电子科技大学, 2013.
      WANG Haitao. Study on some issues of signal processing for passive bistatic radar[D]. [Ph.D. dissertation], Xidian University, 2013.

    11. [11]

      张良俊, 杨杰, 卢开旺. GSM辐射源雷达干扰抑制技术[J]. 电子学报, 2014, 42(9): 1852–1856.
      ZHANG Liangjun, YANG Jie, and LU Kaiwang. Clutter suppression technique in GSM based passive bistatic radar[J]. Acta Electronica Sinica, 2014, 42(9): 1852–1856.

    12. [12]

      陈刚, 王俊, 王珏, 等. GSM信号外辐射源雷达同频干扰抑制方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(6): 37–42.
      CHEN Gang, WANG Jun, WANG Jue, et al. Method of co-channel interference cancellation for the GSM based PBR[J]. Journal of Xidian University:Natural Science, 2017, 44(6): 37–42.

    13. [13]

      WANG Shuzhao, JIN Guibin, JIN Guimei, et al. Method to remove the interference in reflected wave of passive radar based on the improved FastICA[C]. The 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 2009: 4-24–4-30.

    14. [14]

      YOU Hong, YU Wenzhen, and YOU Hong. Co-channel interference restraining for passive radar with illuminators of opportunity based on ICA[C]. 2011 IEEE International Conference on Signal Processing, Communications and Computing, Xi'an, China, 2011: 1–3.

    15. [15]

      陈希信, 王峰, 龙伟军. 基于独立成分分析的外辐射源雷达同频干扰抑制[J]. 中国电子科学研究院学报, 2015, 10(1): 75–77.
      CHEN Xixin, WANG Feng, and LONG Weijun. Co-channel interference suppression for passive radar based on independent component analysis[J]. Journal of China Academy of Electronics and Information Technology, 2015, 10(1): 75–77.

    16. [16]

      GUO Shuai, WANG Jun, CHEN Gang, et al. Mainlobe interference suppression based on independent component analysis in passive bistatic radar[J]. IET Signal Processing, 2018, 12(9): 1193–1201. doi: 10.1049/iet-spr.2018.5198

    17. [17]

      梅铁民. 盲源分离理论与算法[M]. 西安: 西安电子科技大学出版社, 2013: 105–116.
      MEI Tiemin. Theory and Algorithms of Blind Source Separation[M]. Beijing: Xidian University Press, 2013: 105–116.

    18. [18]

      CHENG Guanghui, WANG Leijie, and WANG Zhuande. A nonorthogonal joint block diagonalization algorithm avoiding degenerate solutions[J]. Chinese Journal of Electronics, 2017, 26(2): 331–335. doi: 10.1049/cje.2016.11.009

    19. [19]

      YANG Liu, XIANG Yong, and PENG Dezhong. Precoding-based blind separation of MIMO FIR mixtures[J]. IEEE Access, 2017, 5: 12417–12427. doi: 10.1109/ACCESS.2017.2720578

    20. [20]

      JARBOUI L, DEVILLE Y, HOSSEINI S, et al. A second-order blind source separation method for bilinear mixtures[J]. Multidimensional Systems and Signal Processing, 2018, 29(3): 153–1172.

    21. [21]

      LI Jichuan, ZHAO Yaodong, ZHAO Yongke, et al. Direct path wave purification for passive radar with normalized least mean square algorithm[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, China, 2013: 1–4.

    22. [22]

      陈刚, 王俊, 王珏, 等. 外辐射源雷达参考信号提纯方法[J]. 系统工程与电子技术, 2018, 40(1): 45–49. doi: 10.3969/j.issn.1001-506X.2018.01.07
      CHEN Gang, WANG Jun, WANG Jue, et al. Reference signal purifying method in passive bistatic radar[J]. Systems Engineering and Electronics, 2018, 40(1): 45–49. doi: 10.3969/j.issn.1001-506X.2018.01.07

    23. [23]

      赵耀东, 吕晓德, 李纪传, 等. 基于插值理论的分数延迟杂波自适应对消算法[J]. 系统工程与电子技术, 2013, 35(7): 1409–1414.
      ZHAO Yaodong, LÜ Xiaode, LI Jichuan, et al. Adaptive fractional-delay clutter cancellation algorithm based on interpolation theory[J]. Systems Engineering and Electronics, 2013, 35(7): 1409–1414.

    24. [24]

      刘宇, 吕晓德, 杨鹏程. 一种无源雷达频域扩展相消批处理杂波对消算法[J]. 雷达学报, 2016, 5(3): 293–301. doi: 10.12000/JR15098
      LIU Yu, LV Xiaode, and YANG Pengcheng. Batch version of extensive cancellation algorithm for clutter mitigation in frequency domain of passive radar[J]. Journal of Radars, 2016, 5(3): 293–301. doi: 10.12000/JR15098

    25. [25]

      柴致海, 吕晓德, 杨鹏程, 等. 一种单频网模式下无源雷达时域杂波对消算法[J]. 雷达科学与技术, 2018, 16(1): 6–13.
      CHAI Zhihai, LYU Xiaode, YANG Pengcheng, et al. A time-domain clutter cancellation algorithm for passive radar in SFN[J]. Radar Science and Technology, 2018, 16(1): 6–13.

    26. [26]

      YI Jianxin, WAN Xianrong, LI Deshi, et al. Robust clutter rejection in passive radar via generalized subband cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1931–1946. doi: 10.1109/TAES.2018.2805228

    1. [1]

      孙霆, 董春曦, 毛昱. 一种基于半定松弛技术的TDOA-FDOA无源定位算法. 电子与信息学报, 2020, 42(7): 1599-1605.

    2. [2]

      卢丹, 白天霖. 利用信号重构的全球导航卫星系统欺骗干扰抑制方法. 电子与信息学报, 2020, 42(5): 1268-1273.

    3. [3]

      闵林, 王宁, 毋琳, 李宁, 赵建辉. 基于多源雷达遥感技术的黄河径流反演研究. 电子与信息学报, 2020, 42(7): 1590-1598.

    4. [4]

      宋广南, 卢海梁, 李浩, 李一楠, 郎量, 董思乔, 李鹏飞, 吕容川. 复杂天气及海风对天基被动干涉微波辐射无源探测系统性能的影响. 电子与信息学报, 2020, 42(0): 1-8.

    5. [5]

      李一楠, 张林让, 卢海梁, 李鹏飞, 吕容川, 李浩, 付庸杰, 邱尔雅, 唐世阳. 基于地基综合孔径微波辐射计的空中目标无源探测技术研究. 电子与信息学报, 2020, 41(0): 1-8.

    6. [6]

      孙闽红, 丁辰伟, 张树奇, 鲁加战, 邵鹏飞. 基于统计相关差异的多基地雷达拖引欺骗干扰识别. 电子与信息学报, 2020, 42(0): 1-7.

    7. [7]

      李攀攀, 谢正霞, 周志刚, 乐光学, 郑仕链, 杨小牛. 基于Hilbert填充曲线的海洋无线传感网源节点位置隐私保护方法. 电子与信息学报, 2020, 42(6): 1510-1518.

    8. [8]

      周杨, 张天骐. 多径环境下异步长码DS-CDMA信号伪码序列及信息序列盲估计. 电子与信息学报, 2020, 41(0): 1-8.

    9. [9]

      陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法. 电子与信息学报, 2020, 42(5): 1297-1302.

    10. [10]

      刘汝卿, 蒋衍, 姜成昊, 李锋, 朱精果. 应用于激光雷达信号处理系统的放大电路接口设计. 电子与信息学报, 2020, 42(7): 1636-1642.

    11. [11]

      全英汇, 高霞, 沙明辉, 陈侠达, 李亚超, 邢孟道, 岳超良. 基于期望最大化算法的捷变频联合正交频分复用雷达高速多目标参数估计. 电子与信息学报, 2020, 42(7): 1611-1618.

    12. [12]

      张天骐, 胡延平, 冯嘉欣, 张晓艳. 基于零空间矩阵匹配的极化码参数盲识别算法. 电子与信息学报, 2020, 41(0): 1-7.

    13. [13]

      熊伟, 顾祥岐, 徐从安, 崔亚奇. 多编队目标先后出现时的无先验信息跟踪方法. 电子与信息学报, 2020, 42(7): 1619-1626.

    14. [14]

      胡召鹏, 李实锋, 向渝. 一种新型调频广播授时信号体制研究. 电子与信息学报, 2020, 42(7): 1661-1665.

    15. [15]

      杨静, 李金科. 带有特征感知的D2D内容缓存策略. 电子与信息学报, 2020, 42(0): 1-7.

    16. [16]

      钱志鸿, 蒙武杰, 王雪, 胡良帅, 王鑫. 全负载蜂窝网络下多复用D2D通信功率分配算法研究. 电子与信息学报, 2020, 41(0): 1-7.

    17. [17]

      周义明, 李英顺, 田小平. 基于瑞利多径衰落信道的信号包络频谱感知. 电子与信息学报, 2020, 42(5): 1231-1236.

    18. [18]

      张天骐, 范聪聪, 葛宛营, 张天. 基于ICA和特征提取的MIMO信号调制识别算法. 电子与信息学报, 2020, 41(0): 1-8.

    19. [19]

      石慧慧, 王萌, 饶永南, 卢晓春, 王雪. 北斗系统GEO-3卫星临退役期B1信号质量研究. 电子与信息学报, 2020, 42(7): 1573-1580.

    20. [20]

      董道广, 芮国胜, 田文飚. 时域流信号的多任务稀疏贝叶斯动态重构方法研究. 电子与信息学报, 2020, 42(7): 1758-1765.

  • 图 1  盲源分离模型结构图

    图 2  信号卷积混合滤波器模型

    图 3  信号后向分离滤波器模型

    图 4  i个通道的分离系统示意图

    图 5  无源雷达信号处理流程图

    图 6  传统无源雷达杂波对消能量对比图

    图 7  观测信号与源信号的散点图

    图 8  传统处理流程后的互模糊距离剖面图

    图 9  分离信号与源信号散点图

    图 10  对消能量比较图

    图 11  改进的处理流程后的互模糊距离剖面图

    图 12  噪声对杂波对消比的影响

    表 1  多通道LMS算法总结

     参数:$N$= 源数目,$M$= 观测信号数目
        一般假设$N = M$
        ${K_i}$= 分离滤波器阶数,$i = 1,2, ··· ,N$
        ${\mu _{ij}}$= 步长,$i,j = 1,2, ··· ,N$,且$i \ne j$
     输入:${x_i}\left( t \right) = $观测信号,$i = 1,2, ··· ,N$
     初始化:${ {{W} }_{ {{ij} } } }\left( 0 \right) = { {{{\textit{0}}} }_{ {{Kj} } } }$, $i,j = 1,2, ··· ,N$,且$i \ne j$
         ${ {{Y} }_i}\left( t \right) = { {{{\textit{0}}} }_{Ki} }$, $i = 1,2, ··· ,N$
         ${K_i}$选取$K \ge \max \left\{ {{K_i},i = 1,2, ··· ,N} \right\}$
         ${\mu _{ij}}$根据输入数据进行调整
     计算:对$t = 1,2, ··· $,迭代计算:
        ${y_i}\left( t \right) = {x_i}\left( t \right) - \displaystyle\sum\nolimits_{j \ne i,j = 1}^N { {{W} }_{ij}^{\rm{T} }\left( {t - 1} \right){ {{Y} }_j}\left( t \right)} $
        ${{{W}}_{ij}}\left( t \right) = {{{W}}_{ij}}\left( {t - 1} \right) + {\mu _{ij}}{y_i}\left( t \right){{{Y}}_j}\left( t \right)$
        ${{{Y}}_i}\left( t \right) = {\left[ {{y_i}\left( {t - 1} \right),{y_i}\left( {t - 2} \right), ··· ,{y_i}\left( {t - {K_i}} \right)} \right]^{\rm{T}}}$
        $i,j = 1,2, ··· ,N,i \ne j$
     终止条件:前后两次分离信号之间相关性系数的变化量小于所设
          的误差门限
     输出:${y_i}\left( t \right) = $分离信号,$i = 1,2, ··· ,N$
    下载: 导出CSV

    表 2  回波通道1仿真参数

    主基站信号同频干扰基站信号
    时延(μs)衰减(dB)时延(μs)衰减(dB)
    直达波000.07–1
    多径10.13–80.20–9
    多径20.29–110.36–12
    多径30.42–150.59–15
    弱多径0.16~1.95–20~>–300.16~1.95–20~>–30
    目标111.39–30
    目标217.15–37
    下载: 导出CSV

    表 3  回波通道2仿真参数

    主基站信号同频干扰基站信号
    时延(μs)衰减(dB)时延(μs)衰减(dB)
    直达波0.03–20–1
    多径10.19–80.16–9
    多径20.35–140.36–13
    多径30.46–190.49–14
    弱多径0.16~1.95–20~–300.16~1.95–20~–30
    下载: 导出CSV
  • 加载中
图(12)表(3)
计量
  • PDF下载量:  46
  • 文章访问数:  748
  • HTML全文浏览量:  511
文章相关
  • 通讯作者:  孙正豪, sunzhenghao17@mails.ucas.ac.cn
  • 收稿日期:  2019-03-25
  • 录用日期:  2019-11-25
  • 网络出版日期:  2019-12-14
  • 刊出日期:  2020-05-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章